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Nomenclature

A

ACEE

ASA

ATL

av

Cz

CA

CA

CLE

CO

c.patch

c

D

DFRF

DOC

EMD

Fz

Y

H

hp

K.probe

L

width of photodiode array in
Knollenberg probe, 30 ttm

Aircraft Energy Efficiency
Program (NASA)

actual sampling area of

Knollenberg probe, mm 2

(see appendix C)

Aerodrome designator for
Atlanta, Georgia

average

ambient particle concentration

in probe size channel Z, m -a

(see appendix C)

clear air

unclear air

Aerodrome designator for
Cleveland, Ohio

percentage of time on flight hav-
ing zero particle concentration

charging patch

total wing chord, ft
(see appendix A)

depth of field for Knollenberg
probe, mm (see appendix C)

Ames Research Center, Dryden
Flight Research Facility

Direct _Qperating Cost

equivalent nAelted diameter (of
ice particle), ttm

sampling effectiveness factor
in size channel Z of Knollen-

berg probe, knot-sec-m -3 (see
appendix C)

focal length

effective width of Knollenberg
probe sampling array, mm (see
appendix C)

pressure altitude, ft

Knollenberg probe

arbitrary specified value of LF
in testing of particle detectors as
LF-diagnostic devices

LEFT

LETA

LF

LFC

r/tax

rain

N

OAP

obs

/'()

P(alb)

PZ,T

PIT

PMS

Pt,probe

R

SAS

SPSS

SRI

T

v

_Leading-Edge Flight-Test
Program (NASA)

L_eading-Edge Test Article

laminar flow; also used as vari-

able denoting areal percentage of
laminar flow over a leading-edge
suction test article

laminar-_flow control

free-stream Math number

maximum

minimum

total number of photodiodes

in Knollenberg probe, 32 (see
appendix C)

Optical Array Probe (PMS, Inc.)

observations

probability of occurrence of
event ( )

conditional probability that
event a will occur given that
event b has occurred

number of particles sampled in a

given time interval T in channel
Z by the Knollenberg probe (see
appendix C)

Aerodrome designator for
Pittsburgh, Pennsylvania

Particle Measuring _vstems, Inc.

total pressure, measured at near-

surface pitot probe, lb/ft 2

free-stream total pressure, lb/ft 2

dynamic pressure, lb/ft 2 (see
appendix A)

statistical correlation coefficient,
-I<R_<+I

radius of particle, #m (sec
appendix C)

S_imulated Airline Service

S_tatistical Package for the Social
Sciences

Stanford R_esearch Institute

elapsed time between measure-
ments, see (see appendix C)
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TAS

USAF

37

Y

true airspeed, knots

United States Air Force

free-stream velocity, knots

distance from wing leading edge
to point on chord, x _< c, ft
(see appendix A)

fraction of chord, dimensionless
(see appendix A)

number of photodiodes occulted
by particle (see appendix C)

Z

ZO

Ap

Subscripts:

L

tr

designator of size chan-
nel for Knollenberg probe,
Z = 1, 2,...,30 (see
appendix C)

percentage of time in zero-range
conditions

measured pressure differential,

Pt,_c - Pt,probe, lb/ft2 (see
appendix A)

level of laminar flow

flow transition

vi



Summary

The degradation of laminar flow over aircraft sur-

faces within clouds and haze is a subject of concern

in assessing the viability of laminar-flow-control air-

craft concepts. Therefore, statistics summarizing the

performance of prototype leading-edge laminar-flow-

control devices on the NASA JetStar aircraft during

19 flights in the Leading-Edge Flight-Test (LEFT)

Program are presented. The results, differentiated

into clear air, haze, and cloud conditions, show that

there was significant loss of laminar flow while the
aircraft was within cloud or haze conditions and

that the loss of laminar flow is correlated with an

increase of particle size and/or particle concentra-

tion. Two instruments--a laser particle spectrometer

(Knollenberg probe) and a charging patch, which

infers the presence of cloud particles through their
triboelectric effect--were used to monitor the am-

bient haze-cloud particle environment. The suit-

ability of each of these instruments as a diagnostic
aid for avoiding particle concentrations detrimental

to laminar flow is evaluated; it is concluded that,

while both instruments are suitable in this applica-

tion, the charging patch is particularly suitable due
to its ruggedness and simplicity.

Introduction

Fuel cost is a major factor in airline direct operat-

ing cost (DOC), and variability of fuel cost has also

been a problem for airline economic planning. Fuel

costs were at only 35 percent of DOC at the start of

the 1973 oil embargo, rose to near 60 percent in the

early 1980's (ref. 1), and were reported to be near

the 55-percent level in 1984 (ref. 2). Although the

present numbers are likely to be less than this, future

values remain uncertain, and methods for reducing

fuel consumption are therefore of great importance in
airline operations. Future advanced transports will

incorporate advanced technologies which can reduce

drag and weight and lower fuel consumption (ref. 3).

One promising technology for drag reduction and fuel

saving is laminar-flow control (LFC). Research into
the concept of laminar boundary-layer control can be

traced back to the 1930's and 1940's, when both the-

oretical analysis and experiments were carried out

(ref. 3). The concept of suction-stabilized laminar-
flow control is shown in figure 1. In figure l(a), the

airflow around a current standard (i.e., turbulent)

wing is shown. The flow is laminar over a very lim-

ited extent of the chord; then transition to turbulent

flow takes place. In figure l(b), suction (through

slots or perforations in the surface) is employed in

a carefully tailored fashion such that the boundary

layer remains stable and laminar over a larger ex-

tent of the chord before becoming turbulent. Inter-
national research in laminar flow continued into the

1960's, culminating in the United States with the

USAF-sponsored X-21 program (refs. 4 and 5). The
X-21 flight tests confirmed that extensive laminar

flow could indeed be achieved at subsonic transport
cruise conditions but also showed that there still re-

mained unresolved concerns, both on manufacturing

and on environmental levels, as to the viability of tile

LFC concept in operational service. On the manufac-

turing side, there was concern regarding the practi-

cality of constructing wing surfaces (with the technol-

ogy then available) which would meet the stringent
smoothness and waviness criteria and which would

maintain this surface quality in operational service.

On the environmental level, there was the concern

that insect impingement and other surface contam-

ination on the wing surface could reduce LFC effi-

ciency and also the observation, in X-21 operations,
that encounters with clouds--even tenuous ones-

adversely affect the maintenance of laminar flow. It
is the latter concern--cloud effects on LFC which

motivated the research reported here.

In response to the fuel crisis, NASA initiated ef-
forts in 1976 in laminar boundary-layer control for

drag reduction as part of the Aircraft Energy Ef-
ficiency (ACEE) Program to develop new technol-

ogy for fuel efficient commercial transports (ref. 6).

This initiative used as a springboard the significant

progress in structural materials, fabrication tech-

niques, analysis methods, and design concepts that

had occurred since the 1960's to develop improved

LFC technology and provide evidence that practi-

cal, reliable, and maintainable systems were now

within the state of the art. The most difficult prob-

lems in achieving laminar flow (LF) on commercial

transports appear to be associated with the wing
leading-edge region, which is the portion of the wing

most subject to foreign object damage, insect im-

pingement, rain erosion, icing, and other contami-

nants. Therefore, NASA conceived the Leading-Edge

Flight-Test (LEFT) Program (refs. 3 and 7), a flight

program to test the effectiveness of LFC systems

developed with modern technology and to evaluate
their reliability and maintainability.

Even with the hoped-for resolution of

the concerns on the manufacturing-reliability-

maintainability level, concerns on the effects of cloud

particles on LFC remained. Therefore, it was nec-

essary to evaluate the effects of clouds and haze on

LFC systems during the LEFT Program. This eval-

uation proceeded in two stages. First, studies were
performed to assess the a priori probability of cloud

encounter at typical transport altitudes. The results

of these empirical studies (refs. 8 and 9) basically



showedthat cloudencounterswouldbeexpectedonly
about6 percentof thetime at typicalairlinecruise
altitudesandthat it is thereforepracticalto consider
LFCfor futuretransports.Second,it wasdecidedto
fly cloud-detectinginstrumentsaboardtheLEFTre-
searchaircraft,to evaluatedirectlytheeffectsof the
dynamicbehaviorof theambientcloud-particlecon-
centrationsonthe concurrent extent of laminar flow

on the aircraft. Therefore, two cloud-particle detect-
ing instruments were flown aboard the JetStar air-

craft. One of these is a commercially available laser

particle spectrometer and the other is a charging-
patch device. These are described in detail in this

report.

The LEFT program began in 1983 and was com-

pleted during 1987. The results (refs. 10, 11, and 12)

show that the program was a success on the opera-

tional level; that is, LFC is indeed a viable concept

for transport application. The cloud-particle instru-

mentation also performed successfully. Preliminary

results were presented in reference 13. The major
goals in the present paper are to extend the results of
reference 13 to cover the entire simulated airline ser-

vice portion of the LEFT Program, document thor-
oughly the effects of clouds on the level of laminar

flow obtained, and evaluate rigorously the perfor-
mance of the cloud-particle instrumentation. This

paper provides an archival document on the instru-

mentation and analysis procedures used to study the
cloud problem; this document may serve as a useful

reference in subsequent laminar-flow investigations.

Glenn R. Bittner and Richard S. Thompson of the

Unisys Corporation, Hampton, Virginia, assisted in

processing the data tapes sent to Langley from Ames-

Dryden and in performing the statistical analyses
needed for this paper.

Aircraft and LFC Test Articles

wherein the upper surface of the test article is per-
forated, with electron-beam-drilled holes of about

0.0025 in. diameter spaced about 0.035 in. apart.

Boundary-layer suction on this test article is applied
on the upper surface only, from just below the flow

attachment line at the leading edge back to the uppe r
front spar. Having suction on the upper surface only

allows use of a Krueger flap (a type of leading-edge
high-lift device), which also serves as an ice and in-

sect protection shield. A spray nozzle is mounted on

the underside of the Krueger flap to enhance insect

and ice protection. Approximately 60 percent of the
LETA surface is perforated; there are about 1 million

holes in the test article. The Krueger flap, an inte-
gral part of the Douglas LFC concept, is Used to lower

the landing speed, but using such a flap removes the
possibility of using LFC oil the wing undersurface.

The left-wing glove incorporates a Lockheed Air-

craft Corporation LFC concept which employs suc-

tion through very fine (0.004-in-wide) spanwise slots
on both the upper _ lowersurfaces of the test arti-

cle back to the front spar. There are 27 LFC slots, 6
of which in the attachment line region serve the dual

purpose of dispersing a protective fluid film for insect

protection and anti-icing.

Only a brief description of the LETA's has been

given here; more details may be found in refer-

ences 3, 7, and 13 through 18. Both LETA's have

pressure-measurement instrumentation (surface pitot

arrays, flush-mounted orifices, and hot-film sensors),
arranged as shown in figure 3. The use of the pitot
array sensors to derive LF measurements is described

in appendix A. (Hot-film-sensor data were not used

in this analysis.) The pitot measurements are used

to derive an areal percentage of laminar flow on each
LETA.

The LEFT aircraft is a modified Lockheed Jet-

Star aircraft (NASA aircraft 814), from which the

standard mid-wing slipper fuel tanks (i.e., flush with
wing, not pylon mounted) have been removed and

replaced by laminar-flow gloves, as shown in figure 2.

Each glove consists of a fully functional leading-edge

test article (LETA) and a fairing; each LETA in-

cludes a laminar-flow boundary-layer suction system,

a cleaning/contamination prevention system, and an

anti-icing system. Each LETA extends along about

To avoid confusion, it should be stated that there

are two LETA's, one slotted and one perforated,
but in discussing the laminar-flow performance of

the slotted LETA, separate results are given for
the upper and lower surfaces. For the perforated

LETA, which has only an upper surface, only one
value is given. Thus, there are three values overall

which describe the LF performance of the aircraft,

at any point in time, in terms of areal percentage
of laminar flow on each LETA surface. These are

6 ft of span and extends back to about 13 percent referred to in this report as the values for the slotted

chord, and each glove is faired into the rear spar a_ : upper, slotted lowerl and perforated surfaces. These

about 60 percent chord (upper surface), values constitute the dependent: variables for the

Tim two LETA's involve different concepts. The later analysis, where cloud-partYcle concentration (or

laminar-flow glove on the right wing incorporates charging-patch current) constitute the independent
a Douglas Aircraft Company laminar-flow concept variables.



Meteorological Effects on LFC

The concern about cloud-particle effects on

laminar flow dates at least as far back as the early

1960's to the USAF/Northrop X-21 program (ref. 4).

During flight testing at typical X-21 cruise condi-

tions of Moc = 0.75 and hp = 40000 ft, it was ob-
served that laminar flow was totally lost whenever

the aircraft penetrated cirrus clouds, with horizontal
visibilities estimated to be about 5000 to 10000 ft.

Also, LFC performance was observed to be partially

degraded or erratic when penetrating light cirrus

"haze," even when the horizontal visibility was as
much as 50 miles. Because both these effects were

also expected to be present in the LEFT experi-

ment, the decision was made to carry cloud instru-

ments on the JetStar. At typical aircraft cruise al-

titudes, cirrus clouds and haze are composed mostly

of ice crystals. These crystals have a detrimental ef-

fect on maintaining laminar flow, depending on their

size and concentration (or flux, as perceived by the

aircraft). To explain the erratic LFC performance

in clouds and haze during the X-21 program, Hall

(ref. 19) developed a theory (summarized here in

appendix B) to predict the effects of ice-crystal en-
counter on the maintenance of laminar flow. Basi-

cally, Hall's theory postulates that ice particles en-
tering the boundary layer shed turbulent vortices,

which cause transition in the main flow, as shown in

figure 4. The key factors which determine whether

any given cloud encounter will cause total, partial,

or negligible loss of LF are the cloud particles' size,

concentration, and residence time in the boundary

layer. Reference 15 notes that Pfenninger has sug-

gested that wing sweep is also a key factor. This is

because the spanwise flow on a swept wing may lead
to greater particle wake velocity defects, which pro-

mote increased turbulence production, and also be-

cause the increased effective chord on a swept wing

may result in higher particle residence times in the

boundary Iayer. AIso, compressibility effects encoun-

tered at high altitudes and high Mach numbers may
cause some partial loss of laminar flow.

LEFT Particle Instrumentation

Need for Instrumentation

The need for instrumentation aboard an aircraft

for discerning the presence of ambient particle con-
centrations is sometimes questioned, and therefore

the utility of the two instruments discussed in this

report for general LFC aircraft application may also

not be apparent. This is because true (i.e., thick,

opaque) clouds are obviously visible by an aircrew es-

pecially during daylight conditions. Haze, however,

can be more difficult to detect, particularly when

viewed in an azimuth opposite from the Sun direc-

tion. Also, it is frequently difficult to assess ambient

cloud-haze conditions on dark nights. Therefore, it
is believed that an instrument would be useful for

detecting conditions that degrade LF but which are

not obviously hazy to an aircrew. Having such in-
strumentation would enable the aircrew to determine

that conditions are detrimental to maintaining max-

imum LF levels and to request altitude changes to
restore maximum LF.

Figure 5 is an example of conditions in which

haze, only barely apparent in a photograph, was de-

grading the level of LF on a JetStar mission in the

LEFT Program (flight 1099). Both photographs in

the figure were taken by the JetStar aircrew while

looking out of the left side of the aircraft with the

Sun behind the photographer; the left wing is ap-

parent in each photograph. A haze condition, with
its upper boundary approximately at the level of the

tropopause, is apparent at about the elevation an-

gle of the wingtip. The photograph in figure 5(a)

was taken at 9:24:00 local time. Figure 5(b) is a
photograph taken 9 minutes later at 9:33:00 local

time. During the condition shown in part (a), the

level of LF was 100 percent on the perforated arti-

cle (less on the other article). In the condition in

part (b), the level was 80 percent on the perforated

article. However, the difference in haze conditions

in the two photographs was not very apparent. This

pair of photographs demonstrates that an instrument

for detecting ambient particles would be useful to an
aircrew.

The instrumentation for measuring the ambi-

ent atmospheric (cloud) particle environment dur-

ing flights of the JetStar LFC aircraft consists of
two instruments mounted on a pylon extending dor-

sally from the JetStar fuselage, as shown in figure 6.

(This pylon was omitted from fig. 2 for clarity in

showing the LETA's.) The two instruments are a

well-proven cloud-particle spectrometer, commonly

known as a Knollenberg probe, and a charging patch

based on a triboelectric (frictional) charge-exchange
principle. Both instruments measure the free-stream

particle environment well away from any fuselage-
induced concentration effects. These instruments are

now described individually.

Cloud Particle Spectrometer (Knollenberg

Probe)

A Particle Measuring Systems optical array cloud
droplet spectrometer probe model OAP-230X,

mounted atop the pylon in a cylinder (fig. 6), is

used as a "truth" instrument to measure the spectra

(number density vs. particle size) of cloud and other



particlesencounteredon the LEFT missions.Fig-
ure7 showstheprincipleof operation(part (a)), a
diagramof theprobeopticalsystem(part (b)), and
a photographof theprobein its housing(part (c)).
Figure7(a)is a snapshotviewof a particlepassing
transverselythroughthe laserbeamwith the free-
streamvelocityV_c. While within the beam, the
particle's cross section casts a shadow which is im-

aged on the elements in the photodiode array. Prom

the number of elements shadowed at any instant,
an estimate of the particle's transverse dimension

is obtained. Several versions of the optical array
probe (OAP) are available; the 230X version most

nearly suited the requirement perceived for LEFT.

The OAP-230X probe measures particles in 30 size

bins between 20 and 600 #m effective size with a bin

resolution of 20 #m. The instrument is designed to
provide measurements in all 30 size channels at 100

m/see (194 knots) free-stream velocity. However, be-

cause the JetStar flies at approximately 500 knots
(258 m/sec), measurements in the first two size chan-

nels, 20 40 and 40 60 #m, are not obtained due to

electronic response time considerations, but measure-

ments of particles sized between 60 and 600/2m ate

obtained accurately. Appendix C provides additional

detail on probe operation and derivation of particle

concentration from the probe measurements. From

Hall's theoretical analysis (ref. 19 and appendix B),

particles larger than 33 #m should affect laminar flow

at an altitude of 40000 ft. (In ref. 19 it is also
shown that particles larger than 18 pm should af-

fect laminar flow at 25 00O ft.) Therefore, the probe

will provide measurements of most, but not all, the

particles that are predicted to affect LF; there ap-

pears no acceptable way around this dilemma be-

cause, although instruments exist for measuring par-
ticles smaller than 60 #m diameter, such instruments

are based on a Mie-scattering-based interpretation

of forward-scattered light data, which is valid only
for spherical particles. When such forward-scattering

probe instruments are used to measure ice particles,

which commonly have a nonspherical form, the con-

centrations inferred may be in error by 1 to 2 or-

ders of inagnitude (ref. 20). For these reasons, the

OAP-230X probe is used to give reliable measure-

ments of particles of 60 #m ENID or larger; for the

concentration of smaller sized particles, only a sub-
jective extrapolation of the measured particle con-

centration curve is available. Aerodynamic consider-

ations, based on references 21 and 22, suggest that

the other instrument (charging patch) is affected by

particles down to 20 pm in size. Thus, the read-

ings of both instruments taken together can be used

to infer the total particle environment. For exam-

ple, on a few occasions during the JetStar flights,

4

readings were obtained from the charging patch when

the Knollenberg probe showed that no particles were

present in its effective range; this behavior indicates

that the patch is indeed more sensitive to smaller par-

ticles than is the probe. In most cases, however, both
patch and probe simultaneously indicated particles.

The patch-reading-only cases are typical of very thin

cirrus hazes with large horizontal visibility (several
tens of miles), whereas the instances of simultane-

ous readings in both instruments are associated with

visible clouds and haze. Spectrometers such as the

OAP-230X probe used here have been successfully
used by several researchers in airborne cloud re-

search, most extensively in the USAF Cirrus Particle

Distribution Study (e.g., refs. 23 and 24). Therefore,

reliable results and straightforward data interpreta-
tion were anticipated and were, in fact, achieved.

Additional detail on the theory of operation of spec-

trometer probes may be found in refcrence 25.

The probe weighs 45 lb and requires 60 W of

115-V, 400-Hz power for its operation and 70 W of

28-V dc power for its deicing system.

Data System

The output of the Knollenberg probe is fed to an

onboard data system. An accumulating memory is
provided so that the number of particles encountered

in each size channel during a specified time interval

is recorded, along with various other system outputs

such as time code, on magnetic tape. For compar-

ison to the charging-patch measurement, the differ-

ence in the accumulating count is calculated at 1-see
intervals.

An example of a particle count obtained during

a typical visible cirrus cloud penetration is given as
figure 8(a). The ordinate gives the 1-see particle

count and the double abscissa gives the channel and

particle diameter in pm. The figure shows that

particles were counted in channels 3 to 10 (sizes 60
to 200 #m) in this case, except that there were no

particles of 180 #m size (channel 9). No particles
larger than 200 /_m were present. One particle was

counted in each of channels 3, 4, 8, and 10; 3 in
channel 5; 2 in 6; and 5 in 7. Thus, 14 particles were

couiged in the 1-see interval ending at time 15:54:30

on this flight (106t).

Figure 8(b) shows the concentrations calculated

when the counts in figure 8(a) are scaled for spec-
trometer sampling efficiency effects and airspeed as

described in appendix C. This figure shows a concen-

tration of 358 m -3 in channel 31 192 in 4, 391 in 5,

191 in 6, 370 in 7, 64 in 8, none in 9, and 71 in chaff=
nel 10. Thus, the total particle concentration for this

interval is 1637 m -3. Charging-patch current during



this instant was -0.608 #A, typical of a visible cirrus
cloud penetration.

The probe/data system just described provides
comprehensive data, over its effective size range,
for evaluating the effects of cloud particles on LF
under a range of operational conditions. As discussed
previously, operational LFC transports of the future
will probably require some type of onboard cloud-
particle detection system to inform aircrews that
ambient particle concentrations are not conducive
to maintaining laminar flow. Although a probe
such as the OAP-230X probe would undoubtedly
be effective when connected to instrumentation for

crew-warning purposes, such probes have their main
application as scientific instruments providing spec-
trometric data and requiring regular calibration, and
thus, they represent a considerable oversophistica-
tion for airline service. The spectrometer output
would probably have to be handled by a micro-

processor in order to provide go/no-go LFC feasi-
bility indications, in order not to add appreciably to
crew workload. A system comprising a probe and
microprocessor could be built, but a simpler device
giving a meaningful reading directly is desirable. The
second cloud instrument--the charging-patch parti-
cle detector--was evaluated as an example of such a
simpler device. This instrument is described next.

Charging-Patch Cloud Particle Detector

As an aircraft encounters atmospheric particles,
whether aerosols, volcanic dust, raindrops, or ice
crystals, its airframe becomes charged by a tribo-
electric (frictional) effect. A detailed description of
the charging and discharging phenomena associated
with aircraft is given in reference 26. Therein, it
is shown that the charging-discharging phenomena
are dependent upon several factors, which are sum-
marized in table 1. The particle impact-charge de-
pendence is a very complex phenomenon and is by
no means completely described analytically; never-
theless, by electrically isolating part of the airframe

as a "charging patch," the level of charging current
on the patch may be monitored, and hopefully re-
lated to the ambient atmospheric particle environ-
ment. The use of charging patches has some prece-
dence. Most notably, Stanford Research Institute

(SRI) used a system based on the charging-patch
technique on a USAF contract to perform precipi-
tation measurements (ref. 27), and the technique has
been used in research on aircraft electrification, both
in the Soviet Union (ref. 26) and in France (ref. 28).
The research in reference 28 found that the aircraft

charge could be directly related to the ambient parti-
cle environment if external electric fields from cloud

charge centers were not present; where such charge

centers are present, the aircraft charge state depends
both on the externally applied field and on the par-
ticle impact-generated (triboelectric) charging. Re-
search into the charging of aircraft by ice particles
is continuing, mainly because the charging charac-
teristics of aircraft with composite structures need

to be understood (ref. 29). Also, the technique was
used previously in laminar-flow research for the X-21
aircraft (refs. 4 and 30), where it was found that a

charge indication was usually correlated with a loss of
laminar flow. Langley has refined the charging-patch
concept to the application reported here, mainly by

increasing its sensitivity and using improved fabri-
cation methods (ref. 31). More importantly, in the

JetStar LEFT application, the charging patch is sup-
ported by the Knollenberg probe as a truth device.
This two-instrument approach was used to determine
the suitability of the charging patch as a stand-alone
cloud particle detector for LFC aircraft application.

Figure 9 is a block diagram of the system as de-
veloped at Langley (reL 31). The system consists
of three major components: an aluminum charg-
ing patch isolated from the rest of the airplane by
fiberglass cloth and silicon rubber sealant, a two-
channel charge-rate amplifier, and a surge arrestor.
A prototype charging-patch system was fabricated
and test-flown in 1982 on the vertical stabilizer of the

Langley F-106B storm hazards aircraft to prove the
technique and develop optimum amplifier settings for
cirrus cloud detection. The surge arrestor was origi-
nally needed for the F-106B application because the
prime mission of that aircraft was to measure light-
ning strikes during thunderstorm penetrations. The
F-106B patch consisted of a 6- by 36-in. sheet of
0.016-in. aluminum, contoured and bonded to the
leading edge of the vertical stabilizer. The net
frontal area of that patch was approximately 0.5 ft 2.
The device was flown on several missions, and cir-
rus clouds--even thin ones--were reliably detected
(fig. I0).

A similar charging patch was constructed for use
in the JetStar LEFT program and installed on the
leading edge of the JetStar pylon as shown in figure 6.
In this case, the patch was bonded to a backing plate

which was bolted to the pylon for easy removal. The
JetStar patch is twice the size of that on the F-106B
and thus has a net frontal area of approximately 1 ft 2.
The electronics are the same as those for the F-106B

aircraft, but only the high-sensitivity channel of data
is used because thunderstorm clouds are avoided.

(Note that the position of the Knollenberg probe on
the fin is also shown in fig. 9.) Nevertheless, the
surge arrestor is used here also. A similar charging
patch was also flown on a vertical stabilizer of an



F-14 aircraft, in the NASA Variable Sweep Laminar

Flow Experiment (ref. 15).

Data

LEFT Development History

Modifications to the JetStar to convert it to

the LEFT configuration shown in figure 2, includ-

ing installation of the needed LFC suction sys-

tem, were completed in March 1984. Systems

evaluation and performance flight testing of the

suction and contamination-protection/anti-icing sys-

tems were completed in July 1984. hfitial flight

testing began that same month and involved the
achievement of laminar flow both at design and off-

design conditions, and also the determination of the
effect of varying suction distributions on the lam-

inar flow. The contamination-protection/anti-icing

systems were also further evaluated. All flights in

this initial phase were conducted in the DFRF area.

This phase was completed in July 1984. More de-

tail on this initial testing phase may be found in
reference 32.

As to the instrumentation providing the cloud

particle measurements which are the major subject

of this paper, the charging patch was installed first

and was operational near the end of 1983. The

Knollenberg probe was installed in the summer of
1984. Thus, all missions from the autumn of 1984

through the end of flight testing on October 23, 1987,
had both these instruments operational. The real

proving phase in the JetStar LEFT Program was

the simulated airline service (SAS) phase, begun dur-

ing July 1985 and summarized in references 10, 11,
and 12. Therein, the airplane was operated out of

several airports throughout the continental United

States, as shown in figure I1. This diversity of
sites allowed operations under various meteorologi-

cal and contaminant conditions. In SAS, the Jet-

Star performed two or more flights daily, with each

flight consisting of take-off, climb to cruise altitude,
achievement of laminar flow for some minimum pe-

riod (20 rain is the minimum desirable), descent,

landing, and inspection of the test articles. The con-

dition of the test articles, as to possible insect re-
mains or other evidence of contaminated suction sur-

faces, was fully documented after each flight. These

simulated airline missions provided realistic oper-a-

tional experience, because the LFC systems were

operated in a "hands-off' mode, to establish a main-

tenance and reliability data base. The suction distri-
butions determined as most optimum from the sys-

tems evaluation and performance phase were used in

this simulated airline service phase; they were set and

not changed, in keeping with the hands-off mode of
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operation. Of course, the state of the boundary layer
was monitored by instrumentation, as described in

appendix A, so that long-term changes in the perfor-

mance of the system could be documented. Deploy-
ments of the JetStar in the SAS, to each of the sites

shown in figure 11, were limited to 2 weeks or less.

The SAS phase-comprised three deployments:

(1) to Atlanta, Georgia, in July 1985 (13 flights);

(2) to Pittsburgh, Pennsylvania, in September 1985

(26 flights); and (3) to Cleveland, Ohio, in Febru-

ary 1986 (23 flights). A chronological listing of SAS

flights is given as table 2. The table lists flights

by number, giving departure and destination loca-
tions, noting whether clouds were encountered dur-

ing cruise conditions with the LFC systems turned

on and stabilized, and also noting comments gleaned

from the aircrew's flight logs. It is noted that there

were 13 flights in the Atlanta deployment, but 3 of

them had aircraft instrumentation system malfunc-

tions; therefore, only 10 provided useful data. Also,

several photographs of ambient cloud conditions were
taken to aid in the interpretation of the cloud probe

data; these are also noted in the table. (Two of
these photographs were presented earlier in fig. 5.)

The SAS phase terminated in February 1986. Fur-
ther LETA research with the JetStar was conducted

through October 1987, when the LEFT program
concluded.

Choice of Data for Analysis

As described earlier, Knollenberg probe data were
obtained from the summer of 1984 onward and the

charging patch was operational from the end of 1983,
in the pre-SAS series of flights. Both these systems

were tested in cloud encounters on these early flights

and found to perform well. These early tests showed

that particles were being counted by the probe, and

simultaneous charging of the patch was occurring. It

was found that negative charging was experienced in

ice clouds and positive in water clouds. Also, these

early flights were useful in calibrating the charging

patch by means of probe measurements, to derive
ranges of current that are characteristic of clear air

and unclear air (i.e., cloudy or hazy) conditions.
In this connection, it was found that a charging-

patch current between 0 and -0.05 /zA was highly

correlated with a particle-free environment, as shown

by the-Kn011ent_erg probel Preliminary probe and

patch measurements from these early flights were

given in reference 13. A more extensive set of results,

based on analysis of a portion of the SAS missions

and correlating LF percentages along with probe and

patch measurements, was presented in reference 33.

From the total population of 62 SAS flights avail-

able, 19 flights were chosen for analysis. Figure 12



gives the rationale for the choice or rejection of a
given flight. Key factors in the choice or rejection
were aircrew notes (from flight logs) and a preview
of LF percentages and charging-patch readings ob-
tained from quick-look data stored on floppy disks.
Most of the flight time at commercial airline alti-
tudes takes place in clear air conditions; this was
also true for the SAS missions. Although this re-
sult is favorable for obtaining laminar flow, for the
purpose of this study, these are the "non-interesting"
cases. Preference in this analysis was instead given to
cloudy conditions, which affect LF and "exercise" the
particle instrumentation. Therefore, flights where
the aircrew noted penetration of cirrus and haze were
given preference in the analysis. Therefore, the an-
alyzed data indicated more cloud encounters, on a
percentage basis, than would be derived from a com-
plete survey of all flights. (This point is elaborated
later.) Indeed, aircrew notes were the most impor-
tant criterion in choosing a flight for analysis; the
notes were extremely useful and of vital importance.
Quick-look records, with temporal resolution of 2 to

3 min, indicated the behavior of LF and charging-
patch readings during each flight. Where fluctuations
of LF level and charging-patch current occurred, a
given flight was analyzed farther. Conversely, if LF
remained at a high level and little charging-patch ac-
tivity occurred, a flight was usually regarded as not
interesting enough for analysis. Again, this proce-
dure biases the results toward lower amounts of lam-
inar flow overall than would be obtained in a com-

plete survey of all the data. Figure 13 is an example
of a quick-look data workup from an "interesting"
flight. The changes in charging current, accompa-
nied by changes in LF, are apparent. (Changes in
Mach number are small for this example, and change
in altitude is slight. The changes in LF occur concur-
rently with changes in charging-patch current. Note
that LF returns to original values when current does.)
When the selection process described was complete,
portions of 19 flights (out of the total of 62), totalling
37008 sec (10.28 hr) of data had been chosen. At the
1-sec data resolution, 37008 data points were thus
obtained. The 10.28 hr of data in the sample consti-
tute approximately 26 percent of the total cruise time
in the SAS program. The flights chosen for analysis
are given in table 3, along with the time analyzed
for each flight and aircrew notes on ambient cloud
conditions.

Although this selection process may seem to have
resulted in only cloudy or hazy data in the sample,
in reality, most cloud encounters were transitory,
and around 90 percent of all data were obtained in
clear air. This is elaborated later. The 10.28 hr of

data constitute a viable data sample. To process all

39.08 hr (ref. 10) of data was not necessary, since it
contained very little additional cloud data.

Data Processing

Data from all JetStar LEFT flights were
recorded on-board to computer-compatible tapes at

200 samples/sec data resolution. Later on, tapes for
specific requested times of interest of the flights in
table 2 were prepared by DFRF at 1 sample/sec res-
olution for subsequent analysis at Langley. Finally,
data from these tapes were configured into formats
compatible with the SPSS (Statistical Package for
the Social Sciences, ref. 34) utility software. The
SPSS software was used to analyze the data from

each flight in several different ways. This analysis is
described next.

Example of Concurrent Traces of
Laminar-Flow Percentage, Particle Probe, and
Charging-Patch Readings

Figure 14 shows an example of the concurrent
time histories of laminar flow on the perforated and
slotted articles, as calculated from pitot array mea-
surements, and of the signals from the particle probe
and charging-patch instruments. The data are taken
from flight 1099, which was chosen for discussion
because it is a particularly good example of a pro-
gression from flight in clear air to a cloud encounter
back to clear air again. This was the flight for which
the cloud photographs (fig. 5) were presented earlier.
Figure 14 shows the areal extent of laminar flow on
the three test articles as determined from pitot data

(part (a)), the charging-patch current in microam-
peres (part (b)), and the total number of particles
registered by the particle probe (not the concentra-
tion) during each 1-sec sampling interval (part (c)).
The time traces begin at 9 hr 20 rain 00 sec (0 sec
in the figure) and extend 1000 sec or to 9 hr 36 min
40 sec. At the beginning of the trace, the perfo-
rated article is indicating 100 percent laminar flow,
the charging-patch current is indicating a "clear air"
reading of about -0.04 #A, and the particle count
is zero. At about 750 sec, the percentage of laminar
flow decreases precipitously as a cloud element is en-
countered. An immediate change in the charge level
takes place at the same time, and particle counts are
noticed, also. This first cloud encounter is tempo-
rary, however, and the laminar-flow readings return
to near clear air values at about 800 sec. Thereafter,
a more sustained encounter with thicker clouds be-

gins at about 830 sec. Again, the results indicate a
simultaneous loss of LF, an increase in charge cur-
rent, and an increase in the number of particles. The
lowest levels of LF are reached at about 860 to 880 sec

(18 to 28 percent). At about 945 sec, the aircraft be-
gins to exit the cloud, and charge and particle count
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arestartingto decrease.By about990sec,clearair
isagainencountered.

Fromfigure 14, it is notedthat the degreeof
LF on all articleschangessimultaneouslyand that
the particlecountand charging-patchreadingsare
relatedto thedegreeof laminarflowthat is present.
It is alsonotedthat the chargingpatchgenerally
respondsslightlybeforethe particlecounterdoes,
andtheparticlecounterceasesrespondingbeforethe
chargingpatchdoes. This is becausethe charging
patch respondsto a wider rangeof particlesizes
thandoestheparticlecounterandisalsoconsistent
with expectedcloudparticledistributions,in which
smallerparticlesand lowerparticleconcentrations
surrounddenserconcentrationsandlargerparticles.
Fromcomparisonof the threeparts of the figure,
it is alsoevidentthat particlessmallerthan60#m
definitelyaffectlaminar flow in addition to those
60ttm and larger in size.

Plots such as these were made for a large number
of flights, and statistical analysis was performed, all
of which led to the conclusion that both charging-
patch and particle probe readings can be useful as
reliable indicators of the loss of laminar flow. The

loss of LF in clouds and haze is dramatically illus-
trated by figure 14. It is also apparent that the de-
gree of LF achieved by the perforated LETA is con-
sistently higher than that achieved on either surface
of the slotted LETA and that the upper surface of
the latter has a higher percentage than the lower.
This relative ranking was observed in the vast ma-

jority of cases on all flights analyzed. In the analyses
that follow, degree of LF is the dependent variable,
and charging-patch current or particle concentration
is the independent variable.

Analysis of Data

This investigation has two main goals: (1) to doc-
ument thoroughly the effects of cloud and haze con-

ditions on the LFC articles' performance and (2) to
evaluate rigorously the performance of the cloud par-
ticle instrumentation in diagnosing conditions detri-

mental to laminar flow. To meet these goals, the
following main analysis objectives were identified:

Document the degree of LF performance (i.e., the
areal percentage of laminar flow, derived as de-
scribed in appendix A) for all flights chosen for
analysis

Measure the cloud particle environment on all

flights simultaneously with the aircraft charging
state

Correlate the areal percentage of laminar flow on
both LETA's with the ambient particle concen-
tration and with the aircraft charge
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Use statistical techniques to identify significant ef-
fects and relationships

Evaluate the Knollenberg probe and charging patch
as potential instruments for use on future LFC

transports, on the basis of success, failure, and
false-alarm probabilities

Secondary objectives were

Determine whether the LEFT data seem to follow

the Hall criteria as described in appendix B
Obtain statistical data on the probability of en-

countering clear or unclear air in airline oper-
ations and compare with previous results (e.g.,
refs. 8 and 9)

Degree of LF Performance

Reference 33 reported on the degree of LF perfor-
mance obtained during the first 11 of the 19 flights
analyzed here. These 11 consisted only of the SAS
missions out of Atlanta and Pittsburgh. Reference 33
reported that the average areal percentage of lami-
nar flow for the perforated LETA was 92.3 percent.
For the slotted LETA, the average was 73.9 percent
for the upper surface and 69.fi percent for the lower
surface. The relatively low performance of the slot-
ted article is believed due to some deficiencies in the

fabrication of the slotted LETA (refs. 10, 11, and 12)
and not to any intrinsic lack of merit of the slotted

concept versus the perforated concept. The defect
in fabrication was such that, although the area of
the upper surface of the slotted LETA was at least

30 percent laminar 96 percent of the time, in only
2.5 percent of cases was it more than 99 percent lam-
inar. The respective results for the perforated LETA
were 98 percent for >30 percent laminar, and 63 per-
cent for >99 percent laminar. The comparison be-
tween the perforated LETA and the two surfaces of

the slotted LETA for the first 11 flights is shown by
a histogram plot in figure 15. The marked superi-
ority of the perforated LETA is apparent. Not only
was the percentage of LF > 99 percent in 63 per-
cent of cases; it was between 95 and 99 percent in
about 18 percent of the cases. Thus, in 81 percent of
the cases, the percentage of LF was 95 or greater.
For the slotted article, the percentage of LF was
95 or greater in only about 3 percent of cases for
both the lower and the upper surfaces. Further in-
spection of figure 15 shows that for most cases the
slotted LETA's LF was <80 percent for the upper
surface and <70 percent for the lower surface. Me-

dian values of LF were .w.99 percent for perforated,
_80 percent for slotted upper, and 74 percent for
slotted lower. The average percentages of LF in
clear air were 96.3 percent for perforated, 78 percent
for slotted upper, and 73.5 percent for slotted lower.

There is some evidence from the data that flight at



the highest altitudes and Mach numbers caused com-
pressibility effects and some resultant loss of laminar

flow. The data presented herein have not been cor-

rected for this effect and, thus, the true clear air per-

centages may be a little higher than these values.

Because the slotted LETA gave only about 78 per-

cent LF, even in clear conditions, it was decided that

further study of the correlations of the degree of LF

with particle concentration would not be useful for
the slotted LETA. Therefore, for all analyses per-

formed since reference 33 was published, only the

perforated LETA has been studied, and only the per-
formance of the perforated LETA will be reported in

this investigation. Figure 16 is a histogram distri-

bution of the percentage of LF for the perforated

LETA only for all 19 flights analyzed from the SAS

sample, whereas only 11 flights are reflected in fig-
ure 15. Again, it is noted that the ll-flight sample

included flights from the Atlanta (ATL) and Pitts-

burgh (PIT) deployments; the 19-flight sample con-
sisted of these flights plus additional flights from the

Cleveland (CLE) deployment. The distributions of

the percentage LF on the perforated article for the

two figures are similar, however.

In figure 16, clear bars indicate clear conditions,

and shaded bars represent cloudy or hazy conditions.
Numbers atop the bars indicate the percentage of

cases overall. For example, in the category >99 per-

cent LF, 53.93 percent of cases overall were in this

category. About 1 percent (0.9, actually) of cases
overall had LF > 99 percent, despite the presence of

haze or clouds. Thus, by inference, 53.93 - 0.90 =

53.03 percent of cases had LF > 99 percent and were
associated with clear air. Looked at another way, in

53.03/53.93 or 98.33 percent of cases with >99 per-
cent LF, clear air was present. As the degree of LF
decreases, an increasing percentage of cases is found
to be associated with unclear air. For instance, in the

95- to 99-percent LF category, 0.9/19.35 or 4.65 per-
cent of cases are associated with unclear air. In the

80- to 90-percent category and below, the majority of
cases are associated with unclear air. Below 30 per-

cent, effectively all cases are associated with unclear
air.

Definitions of Clear and Unclear Conditions as

Determined by Instruments

The designations "clear" and "unclear" were de-
termined as follows. First, there are separate clear

definitions for the Knollenberg probe and for the

charging patch. In this report, for the probe, clear
is defined as a particle count of zero during the sam-

pling interval. Unclear is any count greater than zero.

Haze is defined arbitrarily as a particle concentration

(appendix C) of between 0 and 1000 m -3. Cloud

is defined as a particle concentration of 1000 m -3

or greater. While these designations were arbitrary,

they were adopted by correlating probe observations

with JetStar crew notes of hazy or cloudy conditions.

These designations also are believed consistent with

verbal notes and particle concentrations obtained in
the USAF Cirrus Cloud Particle Distribution Stud-

ies (e.g., refs. 23 and 24). It should be stressed that
clear and unclear here are instrument readings and

not aircrew observations.

For the charging patch, as mentioned previously it

was found in early JetStar missions that a charging-

patch current (conventional current notation) of be-
tween 0 and -0.05 #A was correlated with visibly

clear flight conditions and zero particle count. There-

fore, currents in this range were defined as indicative
of clear conditions. As is described later, no separate

categorization of patch readings into haze and cloud

categories was possible. Therefore, patch readings ly-

ing outside the clear category are considered just as
unclear. It will be important to keep these definitions

in mind in the analyses and instrument comparisons
which follow.

Now that the necessary definitions have been

made, it is possible to analyze further the type of

data presented in figure 16. The data in figure 16
were based on data from clear and unclear conditions

as determined by the charging-patch readings. It is

interesting to consider how the data would appear
were the distinction made on the basis of Knollenberg

probe readings. A comparison is presented in table 4.

Therein, the percentage of overall observations in
clear and unclear categories, as determined by both

probe and patch, is given along with the extent of LF

(LF category). (The unclear probe readings comprise
both cloud and haze situations.) Comparison of the

totals in the clear category for the two instruments

and for the unclear category shows that the proba-

bility of clear conditions, as detected by the patch,

is less than that for the probe. The charging patch

had 79.84 percent of cases overall as clear, whereas

the probe had 91.71 percent. Conversely, the per-

centage of unclear observations from the patch was

higher than that for the probe--20.16 and 8.29 per-
cent, respectively. These results are not surprising

because, as remarked previously, at our airspeed the

patch responds to a wider range of particle sizes than

does the probe. Based on the totals in table 4, it

might appear that the probe is slightly superior to

the patch, in discriminating clear and unclear condi-
tions. However, when the results are related to the

overall percentages of clear and unclear conditions,

as determined by the two different instruments, a dif-

ferent interpretation, in terms of application to LFC

aircraft, emerges. A relatively higher percentage of



aircraft, emerges. A relatively higher percentage of
cases is associated with high LF percentages, when
the charging-patch definition of clear is used than
when the probe definition of clear is used. For exam-
ple, 53.03 percent of cases, out of the 79.84 percent in
the clear category, or 66.42 percent have a LF value of
99 percent or greater. With the probe data, a similar
calculation yields only 53.63/91.71, or 58.48 percent.
Similarly, if all cases with LF > 95 percent are consid-
ered, (53.03 + 18.45)/79.84, or 89.52 percent of cases
are in this category with a patch clear reading, but
only (53.63 + 19.24)/91.71 or 79.46 percent of cases
with a probe clear reading. Further results such as
these are presented with respect to cumulative fre-

quencies (for definition, see ref. 34 or 35, e.g.) in
table 5. Prom the table it is evident that a reading
of clear with the patch is more likely to be associ-

ated with a high level of LF than is a reading of clear
from the probe. However, a reading of unclear from

the probe is less likely to be associated with a given
high level of LF than is a reading of unclear from the
patch. The relative influence of these results on the

choice of an instrument for LFC transport applica-
tion will be elaborated later in the section "Evalua-

tion of Two Instruments as Diagnostic Indicators of
Probable Loss of Laminar Flow."

Figure 17 shows a plot of the data in table 5. The
curves here are cumulative distribution functions;
the ordinate gives the probability of exceeding the
percentage of laminar flow on the abscissa. The
figure again makes the main point that the patch is
superior for identifying clear air conditions and the
probe is superior for identifying unclear conditions.

Figure 17 and the data in table 5 also show the
marked difference in the probability of obtaining a
high level of LF between clear and unclear conditions.
For example, to obtain an areal percentage of laminar
flow that is 90 percent or greater with the patch
criterion for clear air, the probability is 0.9272. For
unclear air, the probability is 0.1631. For the probe
criteria, the respective values are 0.8372 and 0.0632.
The data plotted in figure 17 represent overall values
for the 19 flights in the sample. A flight-by-flight
description of the average degree of LF overall for
each flight and of the percentage of hazy or cloudy
conditions for each flight is given next.

Laminar-Flow Performance on Each Flight

Table 6 is a listing for each flight, giving the range
of altitudes flown, the number of data points (i.e.,
number of seconds of data at 1 sample per second)
analyzed, and the overall average areal percentage
of laminar flow during the data portion. All data
were obtained during cruise conditions. The ambient
cloud environment for each flight is also described
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by the percentage of time within clear air, haze,
and clouds as determined by the Knollenberg probe
reading. It is also described by the percentage of
time with zero-range (i.e., charging-patch current
between 0 and -0.05 #A) readings. Next, the average
percentage of laminar flow is given for clear air, haze,
cloud, and zero-range conditions. Overall averages
for each quantity are given at the bottom of the table.

The overall average areal percentage of laminar
flow was 83.50, with some missions having an average
of more than 98. The low was 56.47, which was
obtained during flight 1061, a very cloudy mission.
Both the probe and patch indicated that only about
36 or 37 percent of the flight was flown in clear air.
Faced with cloud cover such as this, an aircrew would
undoubtedly seek a more cloud-free and LF favorable
altitude or choose-to fly with the LFC system shut
off to save energy.

Overall, the Knollenberg probe indicated that
91.71 percent of the time was spent in clear air,
2.50 percent in haze, and 5.79 percent in clouds.
The charging patch indicated zero-range conditions
79.63 percent of the time. Thus, there is about a 12-

percent difference in the degree of cloudiness between
the two measurements. However, both instruments
indicate that clear air is the predominant condition.

When the average percentages of laminar flow in
clear air, haze, and clouds are compared, the overall
averages are, respectively, 92.55, 63.12, and 53.70.
Thus, there is a marked decrease from clear air to
haze, then another smaller decrease from haze to
clouds. The clear air-haze difference is statistically
significant as determined by the Scheff6 one-way
analysis of variance test (ref. 34) at the 95-percent
confidence level; the ha_e-cloud decrease is not. The
relative behavior just described existed on almost

every flight, with flights 1085 and 1103 providing
the only exceptions. (In these cases, there was
higher LF in cloud than in haze.) The average zero-
range reading was 95.92 percent and the average
nonzero-range reading was 61.81 percent; this is a
statistically significant difference as determined by
the same test and confidence level. The zero-range
reading is higher than the clear air reading, but
usually not significantly so. Exceptions are noted on
flights 1061, 1132, and 1136, where in each case the
amount of LF obtained in clear air was considerably
less than that obtained in zero-range conditions. It
is believed that all these flights had concentrations
of very small particles that were not detected by the
Knollenberg probe but were sensed by the charging
patch. As remarked previously, a zero-range reading
is more indicative of a particle-free environment than
a clear indication by the Knollenberg probe, because
the probe only detects particles 60 #m in size or



greaterat JetStarairspeeds.Thedifferencebetween
zerorangeand nonzerorangewasa markedone
in nearlyall cases;the closestagreementwason
flight 1103,wherethe differencewasonly about
5percent.

Becausethedegreeof laminarflowseemsdirectly
proportionalto the degreeof clearnessof the air,
a regressionanalysiswasperformedto determine
the degreeof correlationof the averagepercentage
of laminarflow with (1) the percentage of time in
clear air and (2) the percentage of time in zero-range
conditions. The results were

LF = 51.89 + (0.4586Z0)

LF = 37.06 + (0.5719C0)

(R = 0.907) (i)

(R = 0.777) (2)

where LF is the average percentage of laminar flow on
the flight, Z0 is the percentage of time in zero-range
conditions, CO is the percentage of time in zero par-
ticle conditions, and R is the multiple correlation co-
efficient; an R value of 1.00 indicates perfect correla-

tion and a value of 0 indicates no correlation (ref. 34).
The square of R indicates the fraction of statistical
variance that is explained by the regression equation.

Thus, 0.823 (82.3 percent) of the variance in LF is
explained by variability in Z, leaving 0.177 (17.7 per-
cent) random error. For CO, only 60.4 percent of the
variance is explained; 39.6 percent is random error.
Thus, a good correlation exists for both equations,
but the correlation with zero-range condition is the
higher, 0.907. Equations (1) and (2) may be used
to predict the average value of LF on a flight given,
respectively, the percentage of zero-range conditions

or particle-free(clear) conditions. For a Z0 value of
100 percent, LF would be maximized at 97.75 per-
cent. For a CO value of 100 percent, L-F would be
94.25 percent. The 19-flight ensemble had an aver-
age Z0 of 79.84 percent, and an average CO value
of 92.55 percent. These values translate to expected
overall average LF values of 88.50 and 89.99 percent,
respectively, both of which are a little higher than
the observed 83.50 percent value of LF.

Particle and Charge Conditions on Each Flight

Table 7 provides the particle concentration, in
meter -3, and the average, maximum, and min-
imum particle sizes in micrometers measured by
the Knollenberg probe on each flight. A sub-
categorization by haze and cloud conditions is also
given. (Clear air is, of course, not listed, because
this category by definition contains no particles.)
The table also includes values of the average, mini-
mum, and maximum charging-patch current values in
microamperes obtained in clear air, haze, and cloud
conditions.

From inspection of table 7, it is noted that all
flights except flights 1082, 1141, and 1153 encoun-
tered haze or cloud particle concentrations. Where
haze was encountered, particle concentrations ranged
from a minimum of 150 m -3 to the arbitrary maxi-
mum of 1000 m -3 (in the table, 1.5E2 = 1.5 ×102 =
150), with average concentrations of about 500 m -3.
In cloud conditions, the minimum concentrations
ranged from the arbitrary lower limit of 1000 m -3 on
most flights, to 1800 m -3 on flight 1085. Maximum

concentrations were obtained on flights 1081 and
1099, at about 15 million to 16 million m -3. The low-

est in-cloud maximum was obtained on flight 1103,
3800 m -3.

Particle sizes in both haze and clouds usually
began near the minimum size (60 #m) measurable
at these airspeeds. The average size of particles in
haze seems larger than the average size of particles
in clouds in most cases; this was also true of the
maximum size. This situation most likely reflects
fragmentation of larger haze particles in the cloud
environment.

Statistical Study of Degree of LF Versus
Particle Concentration and Charge Level

Study of the charging-patch currents in table 7
shows that the average current in clear air was gen-
erally near -0.01 #A, whereas the average values in
haze and clouds varied considerably, all the way up
to the electronics saturation values of +1.33/aA. No

clear pattern emerged from the data, as to a possi-
ble relation between current level and extent of lam-

inar flow, although one was sought. This finding was
not unexpected, because results of previous research
have shown that a wide range of charge conditions
can be obtained in clouds (refs. 26 to 28). The only
clear conclusion gained in statistical significance test-
ing was that high levels of LF were significantly re-
lated to charging-patch current readings being in or
near the zero range. Again, the test used was the
Scheff6 one-way analysis of variance test at the 95-
percent confidence level. Table 8 shows the basis for
this conclusion. In the table, the average value of LF
in each of 15 charging-patch current range categories
is given for each flight. The current range was from
-1.330 to more than 1.319 ttA. For a finer-scale anal-

ysis, the zero range (-0.05 to 0 #A) was subdivided
into two equal ranges. Inspection of table 8 shows
that the highest average value of LF was achieved in
the current range between -0.025 and 0 #A on ev-
ery flight except on one (1141) where the peak was
achieved in the 0 to 0.25 #A range. (On that flight,
however, there were fewer than 5 samples in the 0 to

0.05 _A range.) The LF values in or near the zero
range on most flights are significantly higher than the
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LF valuesin therestof the bins.Thevaluesin the
restofthebinsareusuallymore.similar,statistically,
to eachother.

Table8 showsthat the averageLF valuesin the
-0.025to 0#A and-0.05 to -0.025#A binsarecon-
siderablydifferent.Therefore,it mightbe thought
that usinga zerorangeof -0.025 to 0 t_A w0{lid
be associated with higher average values of LF than
would the originally specified -0.05 to 0 #A range.
This was checked out, and an improvement of be-
tween 0.01 and 0.02 was indeed obtained in the cu-

mulative frequency values shown in table 4. FoE
example, the fraction of observations having LF _>
99 percent rose from 0.6642 to 0.6780, the fraction
having LF _> 95 percent rose from 0.8952 to 0.9128,
and the fraction having LF >__90 percent rose from
0.9272 to 0.9437. The reason that larger improve-
ments were not seen is that the number of observa-

tions in the -0.025 to 0 pA bin was much larger than

that in the -0.05 to -0.025 #A bin (28867 observa-
tions versus 679, respectively); therefore, the results
for the overall -0.05 to 0 #A bins approximate those
for tile narrower --0.025 to 0 t_A bin. The results
indicate that the zero range can be narrowed, and
some sensor performance sensitivity improvement ob-
tained. This will be an advantage for more exten-
sive chord laminarization in future LFC aircraft as
discussed later.

The overall percentages of cases having given
ranges of charging current are given in figure 18.
The current was positive 16.51 percent and negative
83.50 percent of the time. Most of the negative
contribution comes from the very slightly negative
conditions occurring in conjunction with clear air,
the 79.84 percent overall just discussed. Of this,
78 percent lies in the -0.025 to 0 pA bin, and
1.84 percent in the -0.05 to -0.025 pA bin. The
remaining 3.66 percent comes from negative currents
larger than -0.05 ttA. The results obtained here
are consistent with other investigations (refs. 26, 27,

and 28) showing mostly negative currents at high
tropospheric or stratospheric flight. The negative
currents stem from ice-particle effects; the positive
currents stem from water droplets (refs. 26 and 27).
Due to the low temperatures at these altitudes, most
particles consist of ice crystals.

Table 9 presents the results of another Scheff4 test

(95-percent confidence level) performed this time on
particle concentration as measured by the Knollen-
berg probe. Once again, the highest average LF is
found in the zero particle category in most of the
cases. This bin usually has significantly higher LF
than other bins; the other bins are not significantly
different from each other. A steady falloff in LF

is noted as particle concentration increases; the de-
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crease is most marked as we go from clear air to haze
but continues at a reduced rate thereafter. The de-
crease seems more monotonic here than is observed

for the charging current in table 7; exceptions some-
times occur in cases with low sample size. As a rule,
the LF values in the particle concentration bins seem
less likely to be statistically different from each other
than are the LF values in adjacent charging-current
bins. Next, an evaluation of the patch and probe
as diagnostic devices for use aboard LFC aircraft is
given.

Evaluation of Two Instruments as

Diagnostic Indicators of Probable Loss of
Laminar Flow

Success Model

An evaluation was carried out of the performance

of the Knollenberg probe and the charging patch
in diagnosing the presence of LF-detrimental condi-
tions. The first step in the evaluation process was the

formulation of a success model, for determining what
fraction of the time each instrument was successful

in diagnosing such conditions, that is, the probabil-
ity of success rate and, similarly, the probabilities of
failure and false alarm. The success model was devel-

oped with the aid of the definitions given in table 10.
In the table, the meteorological probabilities for clear
air and unclear air are defined for each instrument as

shown. Next, the conditional probabilities (ref. 35)
are defined for L, an arbitrary level of LF. The choice
of L would depend on the LFC application. In the
examples that follow, it is assumed that a high level
of L, namely 90 or 95 percent or more, would be
desired; that is, an instrument that is sensitive to

particle concentrations causing only 10 or 5 percent
loss of LF is the type that should be designed. Suc-
cess then has two component events: The level of LF
must equal or exceed L when the instrument gives a
clear indication and, to provide discrimination, the
level of LF must be less than L when the instru-
ment gives a not clear indication. The probability
of each of these events is determined from the data.

Then, the two probabilities are each multiplied by
the respective meteorological (unconditional) proba-
bility and the sum is computed to yield the overall
probability of success. Failure also has two compo-
nent events. A failure occurs when the level of LF

is smaller than L, despite a clear indication from the
instrument, or the level of LF equals or exceeds L,
despite an unclear indication from the instrument.
The former type of failure is termed a "hard fail-
ure," in which LF is below expectation and aircraft
economy suffers, despite a clear diagnosis from the



cloudinstrument.Thelatter typeoffailureis termed
a "falsealarm," in whichthe levelof LF remains
higherthanexpected,althoughthecloudinstrument
indicatespresenceof clouds,andeconomydoesnot
suffer.Theoverallprobabilityof failureiscomputed
in a mannersimilarto that describedfor theoverall
probabilityof success.Thus,the modelsfor com-
putingsuccess,failure,andfalse-alarmprobabilities
for thetwoinstrumentshavebeendefined.Theac-
tual evaluationforthe19-flightensembleispresented
next.

Results

Table 11 presents results of the success/hard-
failure/false-alarm probability evaluation for the
19-flight ensemble of data. Results are presented for
values of L between 0 and 99 percent; levels of 90,
95, and 99 percent were of prime interest because
maintaining high levels of LF is the primary pur-
pose of LFC flight. For L = 99 percent and using
the charging patch as the diagnostic instrument, the
probability of success is 0.729. The probability of
hard failure is high, 0.262, but that for false alarm
is only 0.009. If the criterion value of L is relaxed
to 90 percent, the probability of success increases to
0.909 and that of hard failure is reduced dramati-

cally to 0.058. The probability of false alarm is still
only 0.033. The probability of success peaks at L =
90 percent and falls off both toward higher and lower
values of L. As expected, the probability of hard
failure decreases monotonically and the probability
of false alarm increases as L is decreased.

Results using the Knollenberg probe as the di-
agnostic instrument show similar trends. The prob-
ability of hard failure decreases monotonically with
decreasing L, equalling or exceeding the correspond-
ing patch values at every value of L. The false-alarm
probabilities increase monotonically with decreasing
L and are lower than the corresponding patch val-
ues at every value of L. Success probabilities are
lower than the corresponding values for the patch for

L = 70 percent or higher. Peak success probability,
0.929, is reached at L --- 30 percent.

Thus, the patch has significantly higher success
probabilities than the probe for the prime LF values
of interest and lower hard-failure probabilities, too.
The probability of a false alarm for the patch is
higher than that for the probe, but it is still relatively
small. All these effects are explained by the patch's
sensitivity to particles too small to be detected by
the probe. When the probe indicates that particles

are present, they indeed are present in more than
sufficient number to affect LF. This is the reason that

the probability of false alarm for the probe is lower
than that for the patch.

In conclusion, both instruments show some suc-

cess in discriminating conditions favorable and detri-
mental to maintaining laminar flow. The patch

appears to give slightly better performance; this,
coupled with its simplicity, ruggedness, and low
cost, would make it the preferred candidate. The

Knollenberg probe, however, would be required if
knowledge of particle size is needed for research pur-
poses. In the JetStar LEFT results, the Knollenberg
probe data were extremely vital in establishing that
the dynamic behavior of the charging current was
due to the flux of atmospheric haze and cloud par-
ticles. The LEFT program has established that a
charging patch can be used reliably as a stand-alone
device. Appendix D gives more detail on the success
analysis on a flight-by-flight basis.

Validation of Hall Criteria With JetStar

Data

As previously mentioned, one of the goals of our
investigation was to attempt to validate, with data
from the LEFT program, the Hall criteria, which
were originally developed to explain LF loss on the
X-21 aircraft. The Hall criteria are described in ap-

pendix B. Figure 19 is a copy of the lower portion
of the Hall criteria from figure B1, with an ordi-
nate range change, and is overlaid with observations
of particle concentrations and values of the concur-
rent degree of LF loss, computed as described ear-
lier, for flight 1061. This flight was chosen because
many clouds were encountered, and it had the largest

range of particle concentrations experienced. Parti-
cle concentrations computed from the Knollenberg
probe data were plotted for laminar-flow values lying
in three arbitrarily chosen distinct ranges of LF on
the perforated article: 25 to 35 percent, 75 to 85 per-
cent, and greater than 85 percent. Several distinct
sampling times were chosen at random for each of
these ranges, so that 30 times were chosen overall.

Examination of figure 19 shows that the range
of concentrations corresponding to the 25- to 35-
percent LF range is considerably higher than that
for the 75- to 85-percent range. Close examination
of observations having LF values in the range 85 to
100 percent showed that for most cases no particles
were observed at all; therefore, the preponderance of
observations lay near the bottom of the figure, within
Hall region 2 where it is predicted that LF will not
be lost. However, there were some observations of
high LF lying in Hall region 3, which is ttle region
of partial LF loss. These observations are believed
consistent, however, with the fact that a high but
not 100-percent reading of LF over the leading-edge
test article is very probably associated with a lower
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overall chordwise percentage of LF, and the X-21
aircraft had LF on more of the chord than the JetStar

(_60 versus 13 percent).

As cautioned earlier, only a linfited degree of val-

idation of the Hall criteria may be possible, because
airfoil shape, altitude, and Mach number conditions

are different from those for which the Hall figure was
derived. Nevertheless, the data do seem to show

"Hall criteria-like" behavior in that increasing parti-

cle concentrations do indeed seem to lead to progres-
sively smaller degrees of laminar flow. Therefore, it
is concluded that the Hall criteria seem to be consis-

tent with JetStar observations and that the criteria

are validated qualitatively.

Frequency of Cloud Encounters

As described earlier in table 4, the average per-

centage of clear air as determined from the Knollen-

berg probe measurements was 91.71 for the 19-flight

ensemble. If charging-patch data are used, the value

is 79.84. (See definitions of clear air in the section
"Definitions of Clear and Unclear Conditions as De-

termined by Instruments.") Thus, the percentages of
cases with unclear air were 8.29 as determined from

probe data and 20.16 as determined from patch data.

It is of interest to compare these results with earlier
estimates. References 8 and 9 concluded that clouds

or haze should be encountered about 6 percent of

the time on average at LEFT altitudes. This esti-
mate itself was consistent with an earlier Air Force

estimate of 6 percent cited in reference 4. The data

in references 8 and 9 were based on airborne particle

sampling results and those in reference 4 on surface

observations of visible cirrus cloudiness. Thus,
the airborne probe measurements from these earlier

sources (based on 6250 flight hours of data) seem

in agreement with the reference 4 visual estimates

of cirrus coverage. The LEFT figure of 8.29 per-

cent is higher than the 6-percent value. Reasons for
the increase are undoubtedly sample related. For, as
remarked earlier in the section "Choice of Data for

Analysis," a preference was given to flights report-

ing cloud encounters in order to evaluate the effects
of clouds on LF and to evaluate the cloud instru-

ments. Therefore, many ftight su_ith n ° cloud en-
counters were not analyzed; this biases the result to-

ward higher average cloudiness. Viewed in this light,

the 8.29-percent figure is probably not significantly
different from the previous results.

The value of 20.16-percent nonclear conditions

determined from patct_ data exceeds both the 8.29-

percent and 6-percent estimates. This is due to

the fact that the patch responds to small particles

that the probe does not measure. These smaller

particles do, however, contribute to charging and
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also to some loss of LF. As remarked previously, the

average percentage of LF, 83.50, lies between the

probe clear air value of 91.71 and the patch clear

air value of 79.84. Thus, it seems evident that these

smaller subvisible particles are affecting LF to some
extent.

Recommendations and Predictions for
Future LFC Aircraft

Future LFC research aircraft will undoubtedly

employ laminarization of much more than the 13 per-

cent of chord used in the Leading-Edge Flight Test.

An investigation such as just described here should
also be carried out on such aircraft to determine the

effects of clouds and haze on more extensive chord

laminarizations (i.e., larger values of x/c) and to
reevaluate the cloud detection instrumentation for

application to such aircraft. If a Knollenberg probe-
type instrument is flown, it should have the capa-

bility of sampling particles smaller than the 60-#m

lower limit in this investigation. A charging patch
identical to the one used here could be flown. With

longer chord lengths, a better validation of the Hall

criteria could be attempted. Photographs of cloud

conditions will continue to be very useful in inter-

preting the data.

Predictions, based on projecting the current re-

sults to more extensive chord lengths, include

1. The average areal percentage of laminar flow
will decrease because more of the area will

be susceptible to contamination by turbulent
areas near tt-ie leading edge.-

2. The histograms and cmnulative frequency dis-
tributions w_II_aave a greater Uniformity than
shown here.

3. The range of charging-patch currents coinci-
dent with maximum LF will be narrowed. The

charging-patch]nstrument will be more sensi-

tive; probability of success in diagnosing the

LF condition should increase, and probabil-
ities of hard failure and faIse alarm Should

decrease.

Concluding Remarks

-An extensive data bank of concurrent measure-

ments of laminar-flow areal extent t ambient atmo-
spheric particle concentration, and aircraft charging

state has been gathered for the first time during the

LEFT (Leading-Edge Flight-Test) Program. From

this data bank, 19 flights in the Simulated Airline

Service (SAS) portion of the LEFT program have

been analyzed to determine the effect of haze and
clouds on laminar flow. A total of 10.28 hours of

data (37 o08 data points at 1-see spacing) have been



analyzed,whichrepresentapproximately26percent
of theavailabledata. An extensivestatisticalanaly-
sisshowsthat thereis a significanteffectof cloud
and hazeparticleson the extentof laminarflow
(LF). TheHall laminar-flowlosscriteriadeveloped
for theX-21havebeenvalidatedqualitativelybythe
JetStarLEFT results. Largerparticlesandhigher
particleconcentrationshaveamoremarkedeffecton
LF thandosmallparticles.

The Knollenberg probe and charging patch were

both evaluated as diagnostic instruments for pre-

dicting the loss of LF and for application on LFC

(laminar-flow control) aircraft. It was conchlded that
both these instruments are successful in this role. For

a commercial LFC airplane, however, a charge patch

would be preferred, due to its simplicity and sensi-

tivity to small particles.

The results show that cloud-haze avoidance in

LF aircraft operations must be a continuing goal to
achieve maximum economic benefits of LF technol-

ogy. Nevertheless, the results also show that the

probability of cloud-haze encounter is small enough

to make LF technology practical for everyday use.

NASA Langley Research Center
Hampton, VA 23665-5225
February 22, i989
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Appendix A

Method of Calculating Areal Percentage of Laminar Flow

As shown in figure A1 for the left wing of the JetStar aircraft, viewed looking aft over
the slotted test article ill the foreground, an array ("rake") of 20 evenly spaced pitot tubes

is mounted behind each leading-edge test article. These near-surface pitots are mounted with

their axes about 0.060 in. off the surface. Also, there are 5 stations where two additional

reference pitots are installed, at heights from the wing surface of 0.020 to 0.15 in., and two

reference stations with the pitots about 2.0 in. above the surface. Figure A2 illustrates quali-

tatively how the pitot-tube readings are used to detect the nature of the boundary layer. The

near-surface pitots measure the near-surface total pressure Pt,probe, and the reference pitots
measure the reference pressure Pt,zc. If laminar flow exists at the pitot tube, the boundary

layer will be thin enough to pass under the tube, which will then register a pressure close to
the reference pitot. But, if transition occurs ahead of the surface pitot tube, the tube will be

immersed in a turbulent boundary layer with much reduced total pressure so that Pt,oc-Pt,probe
is positive; the value of this pressure differential depends on where the transition occurs chord-

wise. A high pressure differential signifies that transition occurs near the leading edge; a
lower value means that transition occurs farther along the chord. A relation of the chordwise

Surface pitot - --
(20 stations across span)

Leading-edge
test article

ORIGINAL PAGE iS

OF POOR QUALITY

L-89-20

Figure A1. Pitot instrumentation for monitoring condition of boundary layer (on wing with slotted LETA).
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Figure A3. Computed chordwise extent of laminar flow at Mcc = 0.75 and hp = 36000 ft. (X/C)tr,ma x = 0.129
for perforated LETA; (E'/C)tr,max = 0.137 for slotted LETA.

r_] Laminar flow

2_Turbulent flow

•
Pitot-tube locations 10 '_ "-,,,_

Figure A4. Example of calculation of areal extent of laminar and turbulent flow on perforated LETA.
Flight 1059; Reynolds number per foot = 1.521 x 106; % LF = 98.63; M_ = 0.709; hp = 36854 ft;

Charging-patch current = -0.003/iA..

location of flow transition and the pressure differential is shown in figure A3; this relation is

based upon computation validated by measurements using a forced transition strip at the wing

leading edge. Figure A3 shows the curves used for the perforated article and the upper and

lower surfaces of the slotted article. These curves can only be considered as approximations,

and the predicted transition locations are, hence, only approximate at best. Rigorously, the

relationship is a function of several variables (e.g., altitude, angle of attack, Mach number, span

station), but qualitative results are achievable with these simplified, one curve relationships.

(The curves presented are for Moc = 0.75 and hp = 36000 ft.) In figure A3, the ratio Ap/q is
the ordinate, where Ap is the measured pressure differential and q is the dynamic pressure. The

abscissa is (X/C)tr or the fraction of chord at which transition takes place. Both leading-edge

test articles extend to about 13 percent chord; the precise values are 0.137 for the slotted and

0.129 for the perforated article.
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When the values of Ap/q for all 20 near-surface pitots are calculated and allowance ismade
for the spanwise spacing of the pitots (i.e., area weighting), the total percentage area of the
article that is laminar may be estimated. (The estimate is made by summing parallelogram
areas as in figure A4. In the case of the slotted LETA, the end pitots, 1 and 20, lay outside
the slotted portion of the article; therefore, readings from pitots 1 and 20 were disregarded
in computing tile areal percentage of LF--only readings from pitots 2 through 19 were
used.) Figure A4 shows an example from a point in flight 1059 where it was calculated that
98.63 percent of the area of the perforated upper article had laminar flow. (The solid areas
in the figure are turbulent.) In this paper, it is the areal percentage of laminar flow that is
analyzed for changes with the ambient cloud particle concentration or charging-patch reading.

r
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Appendix B

ORIGINAL PAGE IS
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Hall Criteria for Loss of Laminar Flow on X-21 Aircraft

Hall's theoretical analysis, published in 1964 (ref. 19), considered only columnar ice crystals
with a ratio of length to diameter of 2.5, because that crystal form was assumed to be the
predominant one. When the theoretical impingement dynamics of this type of particle on an
elliptical approximation of the forward portion of the X-21 airfoil was considered, the results
indicated that, for Moo = 0.75 and hp = 40 000 ft, particles smaller than 4 #m in length will not
impinge on the airfoil surface, but particles larger than about 50 #m will impinge at near free-
stream velocity. If the particles are very small, that is, shorter than 4 #m, aerodynamic forces
predominate over inertia forces, most particles follow streamlines, and few enter the boundary
layer. As the ice particles become larger in size and more massive, they begin to penetrate
the laminar boundary layer but do not cause a breakdown to turbulent flow until some critical
size is attained. However, particles of this critical size must be present in a sufficiently large
concentration in order to cause boundary-layer transition. Figure B1, from Hall's analysis,
illustrates this discussion for flight conditions of Moo = 0.75 and hp = 40 000 ft. It should be
noted that EMD is chosen as the abscissa variable on the figure. It has been found that ice

particles in cirrus clouds occur in several crystalline forms and that the columnar variety is not
necessarily the most numerous. (In any event, the regions on the figure pertain to columnar
crystals.) According to the analysis, for columnar ice particles with an EMD larger than
33 #m, particle concentrations smaller than about 500 m -3 produce no effect on maintaining
LF (region 2 of the figure). As particle concentrations increase above about 500 m -3 (for EMD

greater than 33 #m), there is an increasingly detrimental effect on laminar flow (regions 3 and
4 of the figure).

It should be emphasized that the critical values of ice particle size and concentration level
depicted in figure B1 pertain only to the X-21 aircraft, at Moo = 0.75 and hp ---- 40000 ft. For
a particular aircraft design, the critical values and the extent of the four regions just discussed
are functions of airfoil leading-edge shape and sweep angle and of aircraft airspeed and altitude.
The critical values and extent also depend on the particle shape. All these factors affect the

number of ice particles penetrating the boundary layer.

__-.------- Region 1"
no loss of LF,
particle size too smallHall theory

5 000 000[-- f-:-- _---::_x----_--?t?:_:_E:_j_:i:i_?_.:f_
IE ;.:;:2:

500 000 Region 4:
total loss of LF

Ambient 50 000
particle

concentr,_tion, Region 3:
m-o 5 000 partial loss of LF

500

50
0 40 80 120

Particle EMD, gm

Region 2:
no loss of LF,
particle concentration
too low

Figure B1. Predicted laminar-flow degradation in ice particle concentrations (Hall theory).

X-21 aircraft at hp = 40000 and M_ = 0.75.

Conditions for
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Appendix C

Knollenberg Probe Operation and Derivation of Particle Concentration From
Probe Measurements

The purpose of this appendix is to present details relevant to understanding the measure-

ment principle of the instrument and to deriving ambient particle concentrations from the
in._trilment's measurements. (The electronics are not discussed here; for those, the reader is

directed to the manufacturer's manuals. These manuals were used heavily in the description
given here.)

The instrument used is a Particle Measuring Systems optical array cloud droplet spectrom-

eter model OAP-230X designed for aircraft-borne operation. The instrument is a complete

spectrometer probe; its output is particle size in binary code, accompanied by a strobe pulse to
increment an appropriately addressed memory channel. Thus, the number of particles sensed

by the probe in each of 30 size intervals (approximate size range 20 to 600 #m with 20-/zm

resolution) in a preset time interval may be measured. The principle of operation is shown

in figure C1. The laser provides an illumination source. A particle is shown traversing tile
laser beam along the object plane. The particle's shadow is imaged by an optical system on

a linear photodiode array ]ying ill the image plane. The imaged siiad0w momentarily occults

a number of optical array elements, in this case, the effective resolution of the array/optical
system is 20 #m; therefore, particles are sized into 20-#m "bins." The electronics follow the

particle's shadow as it travels along the image plane. Because the array is one:dimensional,
only one dimension--the effective "crosswise width" of the particle is sampled. (It is noted

that two-dimensional PMS probes exist but they are considerably more expensive, and it was

decided that they probably were not necessary for the JetStar LEFT appiicat_on.)The particle

size is determined by dividing the measured shadow size by the system's optical magnification.

For this system, the magnification is 10.0. The laser used in the OAP-230X probe is a 1.5-mW
He-Ne unit. The beam exiting from tile laser is about 1 to 2 mm in diameter and is red in

color. A condensing lens (fig. C2) is placed in front of the laser so that the beam is oval in the

sampling area. When the optics are aligned correctly, this oval will have its long axis parallel
to the phot0diode array and its centerin the middle of the array. After exiting the condensing

lens, the beam is then deviated by a 45 ° mirror and traverses the area between the probe

extension tips, as shown in figure C2. (Note that in the figure, the outline of the instrument
shell is shown by a heavy line.)

The instrument is effective in detecting particles passing through a sampling area with verti-
cal dimension D and horizontal dimension H, as shown in figure C3. Due to the finite width A

of the sampling array, however, a viewing volume DAH (rather than a viewing area) is actually

defined. From the movement of the aircraft a sampled volume, also shown in the figure, is
defined. In the instrument, H is a maximum of 0.6 mm, A is 30 #m, and D is a maximum of

Airflow

Laser

Particle path

Image plane

Object plane Objective (photodiode array)
I lens

Shad

Figure C1. Principle of operation of Knollenberg probe.
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Figure C2. Optical arrangement of Knollenberg probe.

i

Viewing volume = DAH
D

Area seen by array

Collimated
lightbeam

Sampling area

_Flight direction

• __/-Sampled volume

Intermediate shadow plane

Figure C3. Imaging area a.nd Viewing volume for Knollenberg probe.

61 mm, the actual physical spacing of the probe tips. Thus A is a constant dimension, but D
and H change with particle size, as is now explained.

The size of the aforementioned sampling area (shown shaded in fig. C3) depends on the size
of the particle being sampled and is given by the following expression:

Sampling area = (1Or 2) [N - (Y + 1)] Resolution (Cl)
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where

7"

N

Y

Resolution

radius of particle, #m

total number of photodiodes used in OAP-230X probe, 32

integer which describes number of photodiodes in array

that are occulted by shadow of particle

= 20 #m

The 10r 2 term determines the "depth of field," which is denoted by D in figures C2 and C3.

This is the distance over which the probe can "see," correctly size, and accept a particle of a

given diameter. For particles smaller than 156 #m, D is determined by optical and electronic

considerations. All particles larger than 156/zm can be seen, so the upper limit on D for these

particles is 61 mm, the actual physical spacing of the probe tips, as shown in figure C2. The

term N - (Y + 1) describes the effective array width. This is not equal to the dimension H

in figure C3. Rather, it is a measure of the number of particles of a given size that could be

counted meaningfully, side-by-side, within the dimension H. Considered in another way, it is

the available change in position, for a particle of a given size, from the limit at one end of the

photodiode array, just short of being rejected by one end element (number 1), to the other

end of the photodiode array, just short of rejection by the other end element (number 32). (In
this connection, it can be explained why the OAP-230X probe has 32 photodiodes, but counts

in only 30 channels. This is because the two end diodes are used as reject indicators; that is,

when either of these two end diodes is occulted, the measurement is rejected. In other words,

the particle is not counted. Ill this way, only shadows lying fully within the array are measured

and recorded. Thus, the effective array width eliminates from consideration any particle that

could possibly be occulting either one or both of the end diodes.) Therefore, the sample area
is the product of the effective array width and depth of field; the sample volume is this area

times the aircraft velocity.
For completeness, a tabulation of tile depth of field D, effective array width H, and actual

sample area, taken from manufacturer's manuals, is given as table C1. It should be noted
that an additional correction factor F recommended by PMS has been incorporated into the

depth-of-field factor listed for the first three channels so that the depth of field is F x 10r 2. For

the first three channels, F equals 0.26, 0.62, and 0.89; for all other channels, F equals 1.0. The

depth of field is smallest for the smallest particles, becoming larger until it becomes a constant

61 mm for particles larger than about 160 #m, but the effective array width is largest (0.6 mm)

for the smallest particles, becoming smaller uniformly until it becomes 0.02 mm for the largest

particles for the reasons noted previously. Tile result is that the actual sample area is largest

for particles in the midrange and smallest at the ends.

Channel Sampling Effectiveness Factor F Z

By knowing the effect_ve sampling area for a given size particle from table C1 and the

aircraft's true airspeed (TAS), PZ, T, the number of particles sampled in a given time T in
channel Z (tile particle flux), can be converted to the ambient particle concentration C z by:

Number of particles of size Z

CZ = Volume

-_ PZ, T (C2)
(ASA) (WAS) (T)

where Cz is in meter -3 and ASA is obtained from table C1. With ASA in millimeter 2, TAS

in knots, and elapsed time T in seconds, the relation becomes

D

r

CZ = (1.9144 x 106) PZ,T (C3)
(ASA) (TAS) (T)
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When the factor 1.9144 x 106 and the actual sampling area are combined, a channel sampling
effectiveness factor FZ is derived, so that

Fz(Pz,T) (C4)
CZ = (TAS)(T)

where F z is listed in table C2. It is noted that F Z is smallest for the middle-size particles--
those that are sampled most effectively after the optical, electronic, and effective array width
constraints mentioned earlier are taken into account. For the lower sizes, the depth-of-field

restriction would otherwise undercount particles; for the larger sizes, the rejection of particles
occulting the end diodes would likewise result in an undercounting. Therefore, FZ at both ends
is higher than in the middle, to compensate for the undercounting.

Table C1. Sampling Area Chart for Knollenberg Probe

Channel

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Low, ]/,Ill

14.20

34.00

53.80

73.60

93.40

113.20

132.80

152.40

172.20

193.60

211.80

231.20

251.00

270.60

290.40

310.00

330.00

350.00

370.00

390.00

410.00

430.00

450.00

470.00

490.00

510.00

530.00

550.00

570.00

590.00

Actual range of

diameters measured

High, #m

Depth of field,

D a , mm

0.378

2.987

9,028

17.431

26.677

37.822

50.837

61.000

I
J
I

I
4
!

I

Average, #m

24.10

43.90

63.70

83.50

103.30

123.00

142.60

162.30

182.90

202.70

221.50

241.10

260.80

280.50

300.20

320.00

340.00

360.00

380.OO

400.00

420.00

440.00

460.00

480.00

500.00

520.00

540.00

560.00

580.OO

600.00

34.00

53.80

73.60

93.40

113.20

132.80

152.40

172.20

193.60

211.80

231.20

251.00

270.60

290.40

310.00

330.00

350.00

370.00

390.00

410.00

430.00

450.00

470.00

490.00

510.00

530.00

550.00

570.00

590_00

610.00

i
61.000

Effective array

width, Ha, mm

0.60

0.58

0.56

0.54

0.52

0.50

0.48

0.46

0.44

0.42

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0,26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Actual sample

area, mm 2

0.227

1.733

5.056

9.413

13.872

18.911

24.402

28.060

26.840

25.620

24.400

23.180

21.960

20.740

19.520

18.300

17.080

15.860

14.640

13.420

12.200

10.980

9.760

8.540

7.320

6.100

4.880

3.660

2.440

1.220

aSee figure C3 for definitions of D and H.
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Table C2. Values of F Z for 30 Channels of Knollenberg Probe

[For use in eq. (ca)]

Channel FZ, knot-sec-m -3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

8.4335E6

1.1047E6

3.7864E5

2.0338E5

1.3801E5

1.0123E5

7.8452E4

6.8225E4

7.1327E4

7.4723E4

7.8459E4

8.2588E4

8.7177E4

9.2305E4

9.8074E4

1.0461E5

1.1208E5

1.2071E5

1.3077E5

1.4265E5

1.5692E5

1.7435E5

1.9615E5

2.241TE5

2.6513E5

3.1384E5

3.9230E5

5.2306E5

7.8459E5

1.5692E6

=

E

E

Estimating Particle Count From Known Ambient Particle Concentration

If C Z is known, then the number of particles to be counted in T seconds can be estimated.

(Cz) (TAS) (T) (C5)
PZ'T= Fz

This expression is useful in determining whether the probe is operating correctly.
The factor F Z was used to calculate Cz for each channel. The results for all the channels

were then summed to obtain the total particle concentration that was used in the statistical
analyses in this paper.
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Appendix D

Computation of Success, Failure, and False-Alarm Probabilities for the

19 Flights

The purpose of this appendix is to present in greater detail the success evaluation of the two

particle detection instruments by presenting data for the 19 flights individually. Accordingly,

tables D1 and D2 list the results for the charging patch and Knollenberg probe, respectively;

the results pertain to a desired LF criterion value of 95 percent. In each table, the percentages

of time in clear air and unclear air, as defined in table 10, are listed in columns 1_ and

Q. The probabilities of meeting the 95-percent criterion in clear and unclear air are presented

in columns 3_ and 4(_), respectively. The probabilities of success, hard failure, and false alarm

are presented in columns 5_, 6_, and 7_. These probabilities, which were also defined in
table 10, are related to the column listings here as follows (numbers in circles refer to column

numbers in tables D1 and D2):

P(Hard failure) = 1 - P(Success) - P(False alarm)

(D1)

(D2)

(D3)

Comparison of the results in the two tables shows variability in the three probabilities and

leads to the general conclusion that the probability of success is higher and the probability of

failure is lower for the charging patch than for the probe. Out of the 19 flights, the patch had

higher success on 14; the probe was superior on 4, and there was one tie. As to hard failure,

the patch was superior (had a lower probability) in 12 cases, was inferior in 5, and was tied in

2 cases. In false alarm, the probe was superior in 10 cases, inferior in 7, and was tied in 1 case.

Most of the relative success of the patch was achieved in the later flights, which were flown in

winter during the Cleveland SAS deployment. This may have been due to relatively smaller

particles occurring in the cold winter conditions--particles which affected charging but were

not detected by the probe.
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Table D1. Success, Failure, and False-Alarm Probabilities for the 19 Missions

[LF criterion, 95 percent; zero-range charging-patch reading of 0 to -0.05 #A defines clear air; ND indicates no data]

Flight

1059

1060

1061

1080

1081

1082

1085

1087

1094

1099

1100

1103

% of time

air

© © © @ © ©
P(LF > 95%) P(LF > 95%)

in clear air in unclear air P(Success) P(Hard failure)

©
% of time

in clear air in uncIear

95.15 4.85

95.93 4.07

36.74 63.26

92.79 7.21

96.46 3.54

96.98 3.02

100.00 0.00

93.34 6.64

78.48 21.52

65.87 34.13

58.51 41.49

98.30 1.70

49.46 50.54

I00.00 0.00

80.89 19.11

40.84 59.17

95.69 4.31

73.71 26.29

100.00 0.00

P(False alarm)

0.8605 0.0000 0.8673 0.1327 0.0000

0.8796 0.0179 0.8838 0.I155 0.0007

0.7002 0.0243 0.8745 0.1101 0.0154

0.8858 0.0084 0.8934 0.1060 0.0006

0.7057

0.9955

0.9510

0.9840

0.9686

0.9485

0.0000

0.0000

0.0000

0.0000

0.0000

0.1758

0.1489

0.5952

0.0029

0.7161

0.9956

0.9510

0.9849

0.9754

0.9060

0.8498

0.9481

0.8490

0.2839

0.0044

0.0490

0.0000

0.0246

0.0340

0.0889

0.04180.9575

0.0000

0.0000

0.0000

0.0000

0.0000

0.0600

0.0618

0.0101

1132 0.4644 0.7336 0.2649 0.0015

1133 1.0000 ND 1.0000 0.0000 ND

1135 0.9996 0.3717 0.9286 0.0004 0.0710

1136 0.7237 0.0705 0.8455 0.1128 0.0417

0.02360.97541141 0.97480.0375 0.0016

1148 0.9880 0.0075 0.9892 0.0088 0.0020

1153 0.8614 0.0000 0.8614 0.1386 0.0000

=

=

t

Table D2. Computation of Success, Failure, and False-Alarm Probabilities for the 19 Missions

Flight

1059

[LF criterion, 95 percent;

© ©
% of time

in clear air

90.23

% of time

in unclear air

9.77

particle count of zero defines clear air]

@ @ © © ©
P(LF > 95%) P(LF > 95%)

in clear air in unclear air P(Success) P(Hard failure) P(False alarm)

0.9039 0.0199 0.9113

1060 94.77 5.23 0.8887 0.0417 0.8923

1061 37.16 62.84 0.3077 0.0244 0.7274

1080 91.04 8.96 0.9895 0.0405 0.9049

1081

1082

1085

94.92

100.00

97.55

99.05

84.37

83.51

81.57

99.43

96.96

99.93

1087

1094

5.08

0.00

2.45

0.95

15.63

16.49

18.43

0.57

3.04

1099

0.00

1100

1103

0.7155

0.9654

0.9534

0.9466

0.8980

0.8106

0.6755

0.9511

0.23841132

0.8614
T

0.0404

0.0000

0.8542

0.4737

0.0162

0.1475

0.1436

1.0000

0.0000

1133

0.7279

0.9654

0.9336

0.9426

0.9114

0.8340

0.7273

0.9457

0.2616

0.9993

0.0867 0.0019

0.1055 0.0022

0.2573 0.0153

0.0915 0.0036

0.2719

0.0346

0.0455

0.0529

0.0867

0.1582

0.2647

0.0486

0.7384

O.OO02

0.0000

0.0209

0.0045

0.0025

0.0078

0.0080

0.0057

0.0000

0.07 1.0000 1.0000 0.0000 0.0001

1135 99.87 0.13 0.8808 0.0000 0.8810 0.1190 0.0000

1136 99.91 0.09 0.2057 0.0000 0.2064 0.7936 0.0000

1141 100.00 0.00 0.9192 0.0000 0.9192 0.0808 0.0000

1148 84.69 15.31 0.8651 0.0032 0.8853 0.1142 0.0005

1153 100.00 0.0000 0.8614 0.1386 0.0000
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Table 1. Factors Important in Charging of Aircraft

Atmospheric medium Aircraft characteristics Flight regime

Particle phase (ice,

water, or mixed)
Particle shape
Particle size
Particle concentration
Ambient electric field

Surface material (dural,
composite)

Airfoil shape
Engine type (jet or prop)
Static discharger effectiveness

Airspeed

Altitude

Power setting
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Table 2. Listing of Simulated Airline Service Flights in LEFT Program

(a) Atlanta Deployment (13 Flights During July 1985)

Flight

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

Date

7/15
7/15
7/15
7/16
7/16

7/17
7/17

7/17

7/18

7/18
7/20
7/20

7/22

From

EDW

AMA

BAD

ATL

STL

ATL

CLE

SPI

ATL

MSY

ATL

ORF

ATL

To

AMA

BAD

ATL

STL

ATL

CLE

SPI

ATL

MSY

ATL

ORF

ATL

LFI

Cloud encounter

at cruise?

No

Yes

Yes

No

No

Undetermined

No

No

No

No

No

No

No

Aircrew remarks

Other

Cirrus, tops 31500 ft

In/out of clouds

LFC malfunction

Cirrus layer a

Aircraft system malfunction

Aircraft system malfunction

aphotograph taken

b

by aircrew to aid

(b)

in data analysis.

Pittsburgh Deployment (26 Flights During September 1985)

Flight

1079

1080

1081

1082

1083

1084

1085

1086

1087

I088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

ll01

1102

1103

1104

Date

9/9

9/9

9/9

9/lO
9/10

9/11

9/11

9/11
9/12

9/12
9/12
9/13

9/13
9/13

9/14

9/14
9/16

9/16

9/16

9/16

9/17

9/17
9/18

9/18

9/18
9/18

Prom

EDW

DEN

STL

PIT

BOS

PIT

ORD

CHA

PIT

BNA

CLE

PIT

CHS

DCA

PIT

DET

PIT

BGR

JKF

RDU

PIT

AZO

PIT

STL

OKC

ABQ

To

DEN

STL

PIT

BOS

PIT

ORD

CHA

PIT

BNA

CLE

PIT

CHS

DCA

PIT

DET

PIT

BGR

JFK

RDU

PIT

AZO

PIT

STL

OKC

ABQ

EDW

Cloud encounter

at cruise?

No

Yes

Undetermined

No

No

Undetermined

Yes

Undetermined

Yes

No

Yes

Undetermined

No

Undetermined

No

Yes

Undetermined

No

Yes

No

Yes

Yes

No

No

Yes

Yes

Aircrew remarks

Other

Thin cirrus above aircraft

Small particles

Clouds on descent

Light, moderate turbulence a

Particles a

Turbulence a

Hazy

Thin cirrus a

Turbulence a

Jet stream turbulence

(a)

Thin cirrus a

(a)

(a)

(a)

(a)

(a)

Contrail, in/out cirrus

Between thunderstorms a

Cloud tops 25 000 ft

r

F

aphotograph taken by aircrew to aid in data analysis.
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Table 2. Concluded

(c) Cleveland Deployment (23 Flights During February 1986)

Flight

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

Date

2/19

2/19

2/19
2/2o
2/2o
2/20
2/21
2/22
2/24
2/24
2/24
_/24
2/25
2/25
2/2_
2/26
2/26

2/26
2/27
2/27
2/28
2/28
2/28

Fro m

EDW

AMA

SPI

CLE

ATL

ACY

CLE

BOS

CLE

TYS

TPA

BNA

CLE

GRB

LOU

CLE

BTV

LFI

CLE

RIC

CLE

DSM

DEN

To

AMA

SPI

CLE

ATL

ACY

CLE

BOS

CLE

TYS

TPA

BNA

CLE

GRB

LOU

CLE

BTV

LFI

CLE

RIC

CLE

DSM

DEN

EDW

Cloud encounter

at cruise?

Yes

Yes

No

Undetermined

Yes

Yes

Yes

Undetermined

Yes

No

Yes

Yes

No

No

No

Undetermined

No

Yes

Yes

No

No

Undetermined

No

Aircrew remarks

Other

In/out cloud tops

Thin cirrus

Turbulence

Scattered clouds

Cirrus and haze

Cirrus, haze, turbulence

K.probe dirty

Clouds on descent

Ice on LETA's a

Cirrus?

Thin cirrus?

Layers, tops 32 000 ft

Thin cirrus?

aTherefore, data not analyzed.
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Table 3. Listing of Simulated Airline Service (SAS) Flights Chosen for Analysis

Aircrew remarks

Cloud encounter

at cruise?Flight Date From To Other

(a) Atlanta Deployment (3 Flights During July 1985)

1059 7/15 EDW AMA No Cirrus, tops 31 500 ft

1060 7/15 AMA BAD Yes

1061 7/15 BAD ALT Yes In/out of clouds

(b) Pittsburgh Deployment (9 Flights During September 1985)

1080

1081

1082

1085

1087

1094

1099

1100

1103

1132

1133

1135

1136

1141

1148

1153

9/9

9/9

DEN

STL

STL

PIT

Yes

Undetermined

Thin cirrus above aircraft

Small particles

9/10

9/11

9/12
9/14

9/17
9/17
9/18

PIT

ORD

PIT

DET

PIT

AZO

OKC

BOS

CHA

BNA

PIT

AZO

PIT

ABQ

No

Yes

Yes

Yes

Yes

Yes

Yes

Clouds on descent

Particles a

Hazy

Thin cirrus

(a)

Contrail, in/out cirrus

Between thunderstorms a

(c) Cleveland Deployment (7 Flights During February 1986)

2/19

2/19

2/2o
2/2o
2/24
2/26
2/28

AMA

SPI

ATL

ACY

TPA

LFI

DEN

SPI

CLE

ACY

CLE

BNA

CLE

EDW

Yes

No

Yes

Yes

Yes

Yes

No

Thin cirrus

Turbulence

Cirrus and haze

Cirrus, haze, turbulence

Cirrus?

Layers, tops 32 000 ft

Thin cirrus?

R

aphotograph taken by aircrew to aid in data analysis.
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Table 4. Distributions of Observations by Laminar-Flow Category, as Determined by

Charging Patch and Probe, Obtained in 19 Flights on Perforated LETA

LF

category,

percent

0

0 10

10 20

20-30

30-40

40 50

50 60

60-70

70 80

80 90

90 95

95 99

99-100

Total, % ...

% of overall

obs in category

0.07

0.80

0.55

1.56

3.63

3.41

3.35

2.86

2.69

3.77

4.04

19.35

53.93

100.01

Charging patch

% of overall obs

in clear

category

0.06

0.26

0.18

0.13

0.25

0.68

0.76

0.82

1.04

1.63

2.55

18.45

53.03

79.84

% of overall obs

in unclear

category

0.01

0.54

0.37

1.43

3.38

2.73

2.59

2.04

1.65

2.14

1.49

0.90

0.90

20.17

Knollenberg probe

% of overall obs

in clear

category

0.05

0.24

0.17

0.43

1.96

2.20

2.31

1.96

2.20

3.41

3.91

19.24

53.63

91.71

% of overall obs

in unclear

category

0.02

0.56

0.38

1.13

1.67

1.21

1.04

0.90

0.49

0.36

0.13

0.11

0.30

8.30

Table 5. Cumulative Frequency Distributions of Areal Percentage of Laminar Flow for

Charging Patch and Probe, Obtained in 19 Flights on Perforated LETA

Areal

percentage

of LF, L

0

10

20

30

40

50

60

70

80

90

95

99

Fraction with

LF > L,

overall

1.0000

0.9914

0.9859

0.9703

0.9340

0.8999

0.8664

0.8378

0.8109

0.7732

0.7328

0.5393

Charging patch

Fraction with

LF _> L,

clear

1.0000

0.9962

0.9939

0.9922

0.9890

0.9804

0.9709

0.9606

0.9476

0.9272

0.8952

0.6642

Fraction with

LF > L,

unclear

1.0000

0.9728

0.9546

0.8836

0.7162

0.5810

0.4526

0.3513

0.2694

0.1631

0.0894

0.0446

Knollenberg probe

Fraction with

LF > L,

clear

1.0000

0.9969

0.9950

0.9903

0.9690

0.9450

0.9198

0.8984

0.8744

0.8372

0.7946

0.5848

Fraction with

LF>L,

unclear

1.0000

0.9302

0.8846

0.7477

0.5459

0.3999

0.2744

0.1659

0.1066

0.0632

0.0476

0.0352
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Table 10. Definitions of Probabilities (P) for Success Model

Particle environment:

P(CA) _-- P(Clear air)

P(CA) - P(Unclear air)

Conditional probabilities:

= P(Charging-patch current in zero range a)

= P(Knollenberg probe particle count = 0)

= P(Charging-patch current not in zero range a)

= P(Knollenberg probe particle count > 0)

= 1 - P(CA)

PL(SICA) - PL(Success[Clear air) = P(LF _> L[Clear air)

PL(S[C-A) - PL(Success[Vnclear air) = P(LF < L[Unclear air)

PL(F[CA) -- PL(Failure[Clear air) = P(LF < LlClear air) = 1 - PL(S[CA) = P(Hard failure)

PL(F[C-A) - PL(Failure[Vnclear air) = P(LF > L[Unclear air) = 1 - PL(S[CA) = P(False alarm)

Overall success or failure model:

PL(S) = PL(Success) = PL(SICA ) P(CA) + PL(S[CA) P(C--A)

PL(F) = PL(Failure) = PL(F[CA) P(CA) + PL(F[C--A) P(C---._) = 1 - PL(S)

aBetween 0 and -0.05 #A.

Level of LF

performance

on perforated

LETA, L,

percent

0

10

20

30

40

50

60

70

80

b90

b95

b99

Table 11. Diagnostic Indicator Evaluation Results

P(Success)

Charging patch Knollenberg probe

P(Hard failure) P(False alarm) P(Success) P(Hard failure)
0.798

0.801

0.803

0.816

0.847

0.867

0.886

0.898

0.904

a0.909

0.898

0.729

0.000

0.003

0.005

0.006

0.009

0.016

0.023

0.024

0.042

0.058

0.084

0.262

0.202

0.196

0.192

0.178

0.144

0.117

0.091

0.078

0.054

0.033

0.018

0.009

0.917

0.920

0.922

a0.929

0.926

0.916

0.904

0.893

0.876

0.845

0.808

0.616

0.000

0.003

0.005

0.009

0.028

0.051

0.074

0.093

0.115

0.145

0.188

0.380

P(False alarm)

0.083

0.077

0.073

0.062

0.045

0.033

0.023

0.014

0.009

0.005

0.004

0.004

aMaximum success value.

bLevel of prime interest.

38



(a) Normal boundary layer (thick and turbulent with high drag).

(b) Suction with stabilized boundary layer (thin and laminar with low drag).

Figure 1. Concept of suction-stabilized laminar flow.

Figure 2. NASA JetStar airplane with leading-edge test articles (LETA's). Dorsal pylon omitted for clarity.
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Leading-edge test article Inboard edge

Surface pressure orifices

Hot-film se

Outboard edge

Surface pitot-tube array

12% x/c

Fairing

Sensor panel

65% x/c

Rear spar

Figure 3. Typical arrangement and locations of LFC instrumentation on JetStar glove (left wing shown).

=_

Particle trajectory

Particle l_ 1 j

-- Laminar boundary layer

- Transition (from particle wake)

bulent buondary layer .

Figure 4. Particle degradation of laminar flow.
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(a) 9:24:00 local time, 100% LF.

L-89-16

L-89-17

(b) 9:33:00 local time, 80% LF.

Figure 5. Example of haze conditions affecting laminar flow. Flight 1099.
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(k_ Laser

ORIGINAL PAGE IS
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Object
plane Image

[ Objective plane

i lens

_, \ (for sizing particles
• \ into 30 size bins

Particle__ between 20 and
600 I_m)

(a) Principle of operation.

MirirH
He-Ne Laser \ !

;.--J
V=

Photodiode / !

arrayB / I_ Mirror

-- , / _ Obiective

Secondary t _ lens
zoom lens --J

(b) Probe optical system.

L-89-19

(c) Probe in housing.

Figure 7. Optical array spectrometer (Knollenberg probe).
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Knollenberg probe _ _,/..,/- JetStar dorsal pylon
'-4_Lc-'f "-"_

p(_lhanrglinagiPagCh_n_Surge arrestor

To P_

Radio frequency interferenceCharge rate amplifier filter connector

_> . Idc,o_.zl_rI r I active

I I filter I __

LI'_ . I_cto_4 I _I
'_1 u_ active _

I Nter I "

<
Power

Pulse code
modulating

(PCM)
data

recording
system

Figure 9. Block diagram of charging-patch cloud particle detector.

T
2 p.A Low-sensitivity channel

Thick cirrus

Current _.

Time

I_- lo sec--"t
_--- 1.5 mile--_

T
0.25#A High-sensitivity channel

Low-sensitivity channel

Thinand very thin cirrus

High-sensitivity channel

Figure 10. Readings from charging patch in thick and thin cirrus (from prototype instrument aboard F-106B
aircraft).
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IT

Home base Date Number of flights

[] Atlanta July 1985 13

• Pittsburgh Sept. 1985 26

[] Cleveland Feb. 1986 23

Based at 3 major airports; flown in/out of 33 airports; 62 flights total

Figure 11. Airports in Simulated Airline Service Program.

19 flights chosen for

Aircrew notes on cloud, haze
LF variability on quick-look records
Charge variability on quick-look records

Parent population
all 62 SASflights

Realism
Availability of data

39f
2

43 flights not analyzed because

Not interesting on quick look
(i.e., LF 100%, constant)
Not interesting on crew
notes
Crew notes on LF anomalies

(e.g., icing at probes)

2 Other anomahes i

From 19 selected flights: 37008 sec of data (10.28 hr), '_26% of total cruise time in SAS program

3 ATL out of 13 total ATL
9 PIT out of 26 total PIT
7 CLE out of 23 total CLE

t9 SAS analyzed out of 62 total

Figure 12. Rationale for selecting data for analysis.
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Percent LF
from pitot
array data

100

60- P

4O

20 - (a) Percentage LF

0 I , I I

1.30 -
(b) Current

.98 -

Charging- .66 -
patch

current, _A .34 -

.02 -

-.30 I I , 1

Number of
particles

per second

100

8O

60

40

20

B

(c) No. of particles

m

D

1 . I. I

200 600

Time, sec

l I

I I

P Perforated
SU Slotted upper surface
SL Slotted Iowersurface

Figure 14. Example of concurrent traces of laminar-flow percentage, charging-patch current, and particle count

for flight 1099. M_ = 0.75; hp = 30000 ft.

70-

Percentage
of cases

60

5O

40

30

20

10

D Perforated

[]Slotted upper surface

el Slotted lower surface

50-60 60-70 70-80 80-90 90-95

Extent of LF to front spar, percent

95-99 >99

Figure 15. Distribution of laminar-flow values for 11 SAS missions in Atlanta and Pittsburgh deployments

(20 258 data points) for both slotted and perforated LETA's.
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1.00

.8o \
'k

\

\ \
\

X

.60 \
\

\

.40 m

.20 -

0 - i I

30 40

Probability
that LF will

exceed
abscissa

value

\
\

Overall (both instruments)

[] Patch, clear

----_- Patch, unclear
----,_--- Probe, clear

---_---- Probe, unclear

\

\
\

\

\
\

\
\

\

I I I i I

50 60 70

"o,
\,

\

_"_3----£_._
l I _., I l I

80 90 100

Extent of LF to front spar, percent

Figure 17. Ctmmlative frequency distributions of laminar flow in clear air and in unclear air for both
Knollenberg probe and charging-patch instruments.
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Percentage
of cases

80-

70-

60

5O

40-

30-

20-

10-

78.0

16.51

1.84

3.66

I I I I I I

0 -1.5 -1.3 -1.0 -.5 0 +.5 +1.0 +1.3 +1.5

Charging-patch cu rrent, g A

Figure 18. Distribution of charging-patch currents encountered in the 19-mission sample. Numbers atop bars

indicate percent of cases overall.
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Hall region

100 000 -

50 000 -

10 000 -

5 000 -

Particle
concentration,

m-3

1 000 -

500 -

100

50
0

1 /- Hall region 3

/ F Hall region 4

__ / f-- Curve for Hall total

j_ _---.-_ / loss of LF

20 40 60 80 100 120 140

Particle diameter, #m

for Hall threshold
of LF loss

Hall region 2

Figure 19. Example of validation of Hall criteria.

52



Report Documentation Page
Nahonal Aeronaubcs and

SPace Adminlslrat_on

I. ReportNAsANO.TP_2888 ] 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Evaluation of Cloud Detection Instruments and Performance

of Laminar-Flow Leading-Edge Test Articles During NASA

Leading-Edge Flight-Test Program
7. Author(s)

Richard E. Davis, Dal V. Maddalon, Richard D. Wagner,

5. Report Date

April 1989

6. Performing Organization Code

8. Performing Organization Report No.

L-16509

10. Work Unit No.

505-60-31-01

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper

14. Sponsoring Agency Code

David F. Fisher, and Ronald Young

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

15. Supplementary Notes

Richard E. Davis, Dal V. Maddalon, and Richard D. Wagner: Langley Research Center, Hampton,

Virginia.
David F. Fisher and Ronald Young: Ames Research Center, Dryden Flight Research Facility,

Edwards, California.
16. Abstract

Summary evaluations of the performance of laminar-flow control (LFC) leading-edge test articles
on a NASA JetStar aircraft are presented. Statistics presented for the test articles' performance
in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle
concentrations on the extent of laminar flow. The cloud particle environment was monitored

by two instruments--a cloud particle spectrometer (Knollenberg probe) and a charging patch.
Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle
concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated
airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

17. Key Words (Suggested by Authors(s))

Laminar-flow control

Cloud particle instrumentation
Environmental effects on aircraft economy
Simulated airline service

19. Security Classif. (of this report)

Unclassified

NASA FORM 1626 OCT

18. Distribution Statement

20. UnclassifiedSecurityClassif. (of this page)

Subject Category 05

21. No. of Pages [ 22. Price

57 I
NASA-Langley, 1989




